Worksheet 6.4

Calculations involving gases and solutions

1 a What is the concentration of a solution when 60 g of sodium hydroxide is dissolved in water to make $1 \mathrm{dm}^{3}$ of sodium hydroxide solution?
\qquad
b What is the concentration of the sodium hydroxide solution if 20 g of NaOH is added to water to make $500 \mathrm{~cm}^{3}$ of solution?
c Calculate the volume of hydrogen evolved at r.t.p. when excess hydrochloric acid is added to 4 g of zinc.

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

2 A student carried out a titration using $25.0 \mathrm{~cm}^{3}$ sodium hydroxide solution of unknown concentration, which was placed in a conical flask. The sodium hydroxide was exactly neutralised by $20.0 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid added from a burette. What was the concentration of the sodium hydroxide solution?
\qquad
\qquad

3 In a titration, $15.0 \mathrm{~cm}^{3}$ of hydrochloric acid reacted exactly with $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution. The concentration of the acid was $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$.
a Write an equation for this reaction.
b Calculate the number of moles of hydrochloric acid in the acid solution added to the sodium hydroxide solution.
\qquad
\qquad
c Write down the number of moles of sodium hydroxide in the alkali solution.
d Calculate the concentration of the sodium hydroxide solution.

4 A student dissolved 2.5 g of a water softener (washing soda or sodium carbonate) in water in a conical flask. By titration it was found that exactly $17.5 \mathrm{~cm}^{3}$ of hydrochloric acid with a concentration of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ reacted with the water softener.
a Suggest an indicator that could have been used in the titration.
\qquad
b Write a balanced equation for the reaction between hydrochloric acid and sodium carbonate.
\qquad
c Calculate the number of moles of hydrochloric acid that reacted with the sodium carbonate in the flask.
\qquad
d How many moles of sodium carbonate did this react with?
\qquad
e What mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ was this? $\left(A_{\mathrm{r}}: \mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1\right)$
\qquad
\qquad
f What mass of the water softener in the conical flask was water of crystallisation?
\qquad
g How many moles of water was this?
\qquad
h The formula of sodium carbonate can be written as $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$.
Use your answers to parts \mathbf{d} and \mathbf{g} to calculate a value for x.
\qquad

