Worksheet 6.4

Calculations involving gases and solutions

a What is the concentration of a solution when 60 g of sodium hydroxide is dissolved in water to make 1 dm³ 1 of sodium hydroxide solution? **b** What is the concentration of the sodium hydroxide solution if 20 g of NaOH is added to water to make 500 cm³ of solution? c Calculate the volume of hydrogen evolved at r.t.p. when excess hydrochloric acid is added to 4 g of zinc. $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ **2** A student carried out a titration using 25.0 cm³ sodium hydroxide solution of unknown concentration, which was placed in a conical flask. The sodium hydroxide was exactly neutralised by 20.0 cm³ of 0.50 mol/dm³ hydrochloric acid added from a burette. What was the concentration of the sodium hydroxide solution? **3** In a titration, 15.0 cm³ of hydrochloric acid reacted exactly with 10.0 cm³ of sodium hydroxide solution. The concentration of the acid was 0.10 mol/dm³. **a** Write an equation for this reaction. **b** Calculate the number of moles of hydrochloric acid in the acid solution added to the sodium hydroxide solution. **c** Write down the number of moles of sodium hydroxide in the alkali solution.

	d	Calculate the concentration of the sodium hydroxide solution.
4	tit	student dissolved 2.5 g of a water softener (washing soda or sodium carbonate) in water in a conical flask. By ration it was found that exactly 17.5 cm ³ of hydrochloric acid with a concentration of 1.0 mol/dm ³ reacted th the water softener.
	a	Suggest an indicator that could have been used in the titration.
	b	Write a balanced equation for the reaction between hydrochloric acid and sodium carbonate.
	с	Calculate the number of moles of hydrochloric acid that reacted with the sodium carbonate in the flask.
	d	How many moles of sodium carbonate did this react with?
	e	What mass of sodium carbonate (Na ₂ CO ₃) was this? (A_r : Na = 23, C = 12, O = 16, H = 1)
	f	What mass of the water softener in the conical flask was water of crystallisation?
	g	How many moles of water was this?
	h	The formula of sodium carbonate can be written as $Na_2CO_3.xH_2O$. Use your answers to parts d and g to calculate a value for <i>x</i> .
		· · · ·