Worksheet 6.2

The mole and chemical formulae

1	a	What is one mole of any substance?		
	b	What is the empirical formula of a compound?		
	c	What is the molecular formula of a compound?		
2	In W	a reaction 2.4 g of magnesium were reacted with oxygen in the air. 4.0 g of magnesium oxide were produced.		
	**.			
	••••			
	••••			
	••••			
	••••			
3	Ma for	agnetite is an ore of iron which contains 72.4% by mass of iron, the rest being oxygen. What is the empirical mula of magnetite?		
	••••			
	••••			

4	The number of moles of a chemical substance can be calculated using the equation:		
		number of moles of substance = $\frac{1}{rel}$	mass of substance in g ative formula mass of the substance in g
	Use this equation to calculate the number of moles in the following compounds.		
	a	100 g of NaOH	
	b	22 g of CO ₂	
	c	5.8 g of KF	
	d	$30 \mathrm{g} \mathrm{of} \mathrm{MgSO}_4$	
	e	$6.75 \mathrm{g} \mathrm{of} \mathrm{CuCl}_2$	

.....