VOLUMES OF
REVOLUTION

As Level




Consider the area bounded by the

curve y = x2, the x-axis the lines x = 2
and x = 5.
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When this area is rotated about the x —
axis through 360° a solid of
revolution is formed. The volume of
this is called a volume of revolution.
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The volume, V, obtained when the function y = f(x) is rotated
through 360° about the x — axis between the boundary values x =

a and x = b is given by the formula V = nf: y%dx.
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Example 1: Find the volume obtained when the shaded region
IS rotated through 360° about the x — axis.
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Sometimes a curve is rotated about the y-axis. In this case the
general rule is:

The volume, V, obtained when the function x = f(y) is rotated
through 360° about the y — axis between the boundary values y =

a and y = b is given by the formula V = nff x4dy .




Example 2: Find the volume obtained when the shaded region
IS rotated through 360° about the y — axis.




Example 3: Find the volume obtained when the shaded region
IS rotated through 360° about the x — axis.
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When the shaded region is rotated about the
x — axis, a solid with a cylindrical hole is
formed.

The radius of the cylindrical hole is 1 unitand >
the length of the hole is 2 units. ’
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Example 3: Find the volume obtained when the shaded region
IS rotated through 360° about the x — axis.

2x%+y% =9 YA
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V= nj y?dx — volume of cylinder
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