IGCSE Chapter 12 Algebraic indices

Three laws of indices were introduced:

1.
$$a^m \times a^n = a^{m+n}$$

2.
$$a^m \div a^n = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

Exercise 12.1 1 Simplify the following:

a
$$c^5 \times c^3$$

b
$$m^4 \div m^2$$

$$(b^3)^5 \div b^6$$

d
$$\frac{m^4n^9}{mn^3}$$

e
$$\frac{6a^6b^4}{3a^2b^3}$$

$$f = \frac{12x^5y^7}{4x^2y^5}$$

$$\frac{4u^3v^6}{8u^2y^3}$$

h
$$\frac{3x^6y^5z^3}{9x^4v^2z}$$

a
$$4a^2 \times 3a^3$$

b
$$2a^2b \times 4a^3b^2$$

c
$$(2p^2)^3$$

d
$$(4m^2n^3)^2$$

e
$$(5p^2)^2 \times (2p^3)^3$$

e
$$(5p^2)^2 \times (2p^3)^3$$
 f $(4m^2n^2) \times (2mn^3)^3$

$$g \frac{(6x^2y^4)^2 \times (2xy)^3}{12xy^6y^8}$$

$$h (ab)^d \times (ab)^e$$

The zero index

A term raised to the power of zero is always equal to 1.

$$a^0 = 1$$

Negative indices

A negative indicates that a number or an algebraic term is being raised to a negative power.

$$a^{-m}=rac{1}{a^m}$$

Exercise 12.2

1 Simplify the following:

a $c^3 \times c^0$

c $(p^0)^3(q^2)^{-1}$

b $g^{-2} \times g^3 \div g^0$ **d** $(m^3)^3 (m^{-2})^5$

a
$$\frac{a^{-3} \times a^5}{(a^2)^0}$$

c
$$(t^3 \div t^{-5})^2$$

b
$$\frac{(r^3)^{-2}}{(p^{-2})^3}$$

d
$$\frac{m^0 \div m^{-6}}{(m^{-1})^3}$$

Fractional indices

In general:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \text{ or } (\sqrt[n]{a})^m$$

Example 1:

Express $(\sqrt[3]{a})^4$ in the form $a^{\frac{m}{n}}$.

$$\sqrt[3]{a} = a^{\frac{1}{3}}$$

$$(\sqrt[3]{a})^4 = (a^{\frac{1}{3}})^4 = a^{\frac{4}{3}}$$

Example 2:

Express $b^{\frac{2}{5}}$ in the form $(\sqrt[n]{b})^m$.

$$b^{\frac{1}{5}} = \sqrt[5]{b}$$

$$b^{\frac{2}{5}} = \left(b^{\frac{1}{5}}\right)^2 = \left(\sqrt[5]{b}\right)^2$$

Example 3:

Simplify
$$\frac{p^{\frac{1}{2}} \times p^{\frac{1}{3}}}{p}$$

$$p^{\frac{1}{2}} \times p^{\frac{1}{3}} = p^{\frac{1}{2} + \frac{1}{3}} = p^{\frac{5}{6}}$$

$$\frac{p^{\frac{5}{6}}}{p} = p^{\frac{5}{6}-1} = p^{-\frac{1}{6}} = (\sqrt[6]{p})^{-1} = \frac{1}{\sqrt[6]{p}}$$

Exercise 12.3 1 Rewrite the following in the form $a^{\frac{m}{n}}$:

a
$$(\sqrt[5]{a})^3$$

a
$$(\sqrt[5]{a})^3$$
 b $(\sqrt[6]{a})^2$ **c** $(\sqrt[4]{a})^4$

c
$$(\sqrt[4]{a})^4$$

d $(\sqrt[7]{a})^3$

2 Rewrite the following in the form $(\sqrt[n]{b})^m$:

a
$$b^{\frac{2}{7}}$$

b
$$b^{\frac{8}{3}}$$

a
$$b^{\frac{2}{7}}$$
 b $b^{\frac{8}{3}}$ **c** $b^{-\frac{2}{5}}$

d $b^{-\frac{4}{3}}$

3 Simplify the following algebraic expressions, giving your answer in the form $a^{\frac{m}{n}}$:

a
$$a^{\frac{1}{2}} \times a^{\frac{1}{4}}$$

a
$$a^{\frac{1}{2}} \times a^{\frac{1}{4}}$$
 b $a^{\frac{2}{5}} \times a^{-\frac{1}{4}}$ c $\frac{\sqrt{a}}{a^{-2}}$

$$c \frac{\sqrt{a}}{a^{-2}}$$

d $\frac{\sqrt[3]{a}}{a}$

Simplify the following algebraic expressions, giving your answer in the form $(\sqrt[n]{b})^m$:

a
$$\frac{\sqrt{b} \times b^{\frac{1}{4}}}{b^{-\frac{1}{5}}}$$

b
$$\frac{b^{-\frac{1}{3}} \times \sqrt[3]{b}}{b^{\frac{2}{5}} \times b}$$

c
$$\frac{b^3 \times b^{-\frac{1}{3}}}{b^{-2}}$$

a
$$\frac{\sqrt{b} \times b^{\frac{1}{4}}}{b^{-\frac{1}{5}}}$$
 b $\frac{b^{-\frac{1}{3}} \times \sqrt[3]{b}}{b^{\frac{2}{3}} \times b}$ c $\frac{b^3 \times b^{-\frac{1}{3}}}{b^{-2}}$ d $\frac{b^{-2} \times \sqrt[3]{b}}{\sqrt{b} \times (\sqrt[3]{b})^{-1}}$

a
$$\frac{1}{3}x^{\frac{1}{2}} \div 4x^{-2}$$

b
$$\frac{2}{5}y^{\frac{1}{3}} \times 5y^{-\frac{2}{3}}$$

a
$$\frac{1}{3}x^{\frac{1}{2}} \div 4x^{-2}$$
 b $\frac{2}{5}y^{\frac{1}{3}} \times 5y^{-\frac{2}{3}}$ **c** $\left(2p^{-\frac{1}{4}}\right)^2 \div \frac{1}{2}p^2$ **d** $3x^{-\frac{2}{3}} \div \frac{2}{3}x^{-\frac{1}{3}}$

d
$$3x^{-\frac{2}{3}} \div \frac{2}{3}x^{-\frac{1}{3}}$$

Student assessment 1

1 Simplify the following using indices:

$$a \times a \times a \times b \times b$$

b
$$d \times d \times e \times e \times e \times e \times e$$

2 Write the following out in full:

a
$$m^3$$

b
$$r^4$$

3 Simplify the following using indices:

$$a^4 \times a^3$$

b
$$p^3 \times p^2 \times q^4 \times q^5$$

c
$$\frac{b^7}{b^4}$$

d
$$\frac{(e^4)^3}{e^{14}}$$

4 Simplify the following:

a
$$r^4 \times t^0$$

b
$$\frac{(a^3)^0}{b^2}$$

$$\frac{(m^0)^3}{n^{-3}}$$

a
$$\frac{(p^2 \times p^{-5})^2}{p^3}$$

b
$$\frac{(h^{-2} \times h^{-5})^{-1}}{h^0}$$

Student assessment 2

1 Rewrite the following in the form $a^{\frac{m}{n}}$:

a $(\sqrt[8]{a})$ **b** $(\sqrt[5]{a})^{-2}$

2 Rewrite the following in the form $(\sqrt[n]{b^m})$:

a $b^{\frac{4}{9}}$ **b** $b^{-\frac{2}{3}}$

3 Simplify the following algebraic expressions, giving your answer in the form $a^{\frac{m}{n}}$:

a $a^{\frac{1}{3}} \times a^{\frac{3}{2}}$ **b** $\frac{\sqrt[3]{a}}{a^{-\frac{5}{6}}} \times a^2$

4 Simplify the following algebraic expressions, giving your answer in the form $(\sqrt[n]{t})^m$:

a $\frac{\sqrt{t} \times t^{\frac{2}{3}}}{t^{-\frac{1}{2}}}$ b $\frac{\sqrt[3]{t}}{t^2 \times t^{-\frac{2}{3}}}$