BASIC RULES FOR UNCERTAINTY CALCULATIONS

Types of uncertainties:

- 1) An Absolute Uncertainty is denoted by the symbol " Δ " and has the same units as the quantity.
- 2) A Relative or Percent Uncertainty is denoted by the symbol "E" and has no units.

To convert back and forth between the two types of uncertainties consider the following:

$$m = (3.3 \pm 0.2) \text{ kg} = (3.3 \text{ kg} \pm 6.1\%)$$

The Absolute Uncertainty is: $\Delta m = 0.2 \text{ kg} = (6.1/100) \text{ x } 3.3 \text{ kg}$ The Relative Uncertainty is: $\varepsilon_m = 6.1\% = (0.2/3.3) \text{ x } 100\%$

Completing Uncertainty Calculations:

1) Addition and Subtraction: ADD the Absolute Uncertainties

Rule:
$$(A \pm \Delta A) + (B \pm \Delta B) = (A + B) \pm (\Delta A + \Delta B)$$

 $(A \pm \Delta A) - (B \pm \Delta B) = (A - B) \pm (\Delta A + \Delta B)$

Consider the numbers: (6.5 ± 0.5) m and (3.3 ± 0.1) m Add: (6.5 ± 0.5) m + (3.3 ± 0.1) m = (9.8 ± 0.6) m Subtract: (6.5 ± 0.5) m - (3.3 ± 0.1) m = (3.2 ± 0.6) m

2) Multiplication and Division: ADD the Relative Uncertainties

Rule:
$$(A \pm \varepsilon_A) \times (B \pm \varepsilon_B) = (A \times B) \pm (\varepsilon_A + \varepsilon_B)$$

 $(A \pm \varepsilon_A) / (B \pm \varepsilon_B) = (A / B) \pm (\varepsilon_A + \varepsilon_B)$

Consider the numbers: $(5.0 \text{ m} \pm 4.0\%)$ and $(3.0 \text{ s} \pm 3.3\%)$ Multiply: $(5.0 \text{ m} \pm 4.0\%)$ x $(3.0 \text{ s} \pm 3.3\%)$ = $(15.0 \text{ m} \cdot \text{s} \pm 7.3\%)$ Divide: $(5.0 \text{ m} \pm 4.0\%) / (3.0 \text{ s} \pm 3.3\%)$ = $(1.7 \text{ m/s} \pm 7.3\%)$

3) For a number raised to a power, fractional or not, the rule is simply to <u>MULTIPLY</u> the Relative Uncertainty by the power.

Rule:
$$(A \pm \varepsilon_A)^n = (A^n \pm n\varepsilon_A)$$

Consider the number: $(2.0 \text{ m} \pm 1.0\%)$

Cube: $(2.0 \text{ m} \pm 1.0\%)^3 = (8.0 \text{ m}^3 \pm 3.0\%)$

Square Root: $(2.0 \text{ m} \pm 1.0\%)^{1/2} = (1.4 \text{ m}^{1/2} \pm 0.5\%)$

4) For multiplying a number by a constant there are two different rules depending on which type of uncertainty you are working with at the time.

Rule - Absolute Uncertainty: $c(A \pm \Delta A) = cA \pm c(\Delta A)$

Consider: $1.5(2.0 \pm 0.2) \text{ m} = (3.0 \pm 0.3) \text{ m}$

Note that the Absolute Uncertainty is multiplied by the constant.

Rule - Relative Uncertainty: $c(A \pm \epsilon_A) = cA \pm \epsilon_A$

Consider: $1.5(2.0 \text{ m} \pm 1.0\%) = (3.0 \text{ m} \pm 1.0\%)$

Note that the Relative Uncertainty **is not** multiplied by the constant.

Comparing Values:

1) When comparing two values you should complete a <u>CONSISTENCY CHECK</u>. This is the preferred way to compare values which have uncertainties.

<u>Rule:</u> If the following inequality is true you may say that the values you are comparing are consistent with each other within experimental uncertainty, otherwise the values are inconsistent.

$$|A - B| \le |\Delta A + \Delta B|$$

Consider the numbers: (3.3 ± 0.2) m and (3.1 ± 0.1) m Consistency check: |3.3 - 3.1| m $\leq |0.2 + 0.1|$ m |0.2| m $\leq |0.3|$ m \therefore Consistent Values

Note that the difference of the two quantities is less than or equal to the sum of the <u>Absolute Uncertainties</u>. You cannot complete a consistency check using Relative Uncertainties.

Sometimes you will be comparing an experimental value which has an uncertainty to a theoretical value which may not have an uncertainty. In this case the above calculation still holds.

Compare the numbers:
$$g = 9.87 \text{ m/s}^2 \pm 0.09 \text{ m/s}^2$$
 Experimental value $g = 9.81 \text{ m/s}^2$ Theoretical Value Consistency check: $\begin{vmatrix} 9.87 - 9.81 & | m/s^2 \le 0.09 & | m/s^2 \end{vmatrix} = 0.09 & | m/s^2$ Consistent

2) When comparing two values which don't have uncertainties you may then calculate a Percent Difference as follows:

$$\% Diff = \frac{|Theor.Value - Exp.Value|}{Theor.Vlaue} x100\%$$