/Quadratics/

The discriminant $\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}$

- If $\mathbf{b}^{2}-4 \mathbf{a c}$ is a perfect square, the roots will be integers or fractions
If $\mathbf{b}^{2}-\mathbf{4 a c}>\mathbf{0}$, the equation $a x^{2}+b x+c=0$ will have two roots
If $\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}<\mathbf{0}$, there will be no roots
If $\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$, the roots given by $x=\frac{-b \pm 0}{2 a}=\frac{-b}{2 a}$, and there is one root only or repeated root

Example1: Use the value of the discriminant $\mathbf{b}^{2}-4 \mathrm{ac}$ to determine whether the following equations have two roots, one root or no roots

- $2 x^{2}-3 x-4=0$
$\mathrm{a}=2, \mathrm{~b}=-3, \mathrm{c}=-4, \mathrm{~b}^{2}-4 \mathrm{ac}=(-3)^{2}-4 \cdot 2 \cdot(-4)=9+32=41>0$
so the equation has two roots. Also, as 41 is not perfect square, the roots are irrational
- $2 x^{2}-3 x-5=0$
$\mathrm{a}=2, \mathrm{~b}=-3, \mathrm{c}=-5, \mathrm{~b}^{2}-4 \mathrm{ac}=(-3)^{2}-4 \cdot 2 \cdot(-5)=9+40=49>0$
so the equation has two roots. Also, as 49 is perfect square, the roots are rational
- $2 x^{2}-4 x+5=0$
$\mathrm{a}=2, \mathrm{~b}=-4, \mathrm{c}=5, \mathrm{~b}^{2}-4 \mathrm{ac}=(-4)^{2}-4 \cdot 2 \cdot 5=-24<0$
As the discriminant is negative, the equation $2 \mathrm{x}^{2}-4 \mathrm{x}+5=0$ has no roots.
- $2 x^{2}-4 x+2=0$
$\mathrm{a}=2, \mathrm{~b}=-4, \mathrm{c}=2, \mathrm{~b}^{2}-4 \mathrm{ac}=(-4)^{2}-4 \cdot 2 \cdot 2=0$
As the discriminant is zero, the equation $2 x^{2}-4 x+2=0$ has only one (repeated) root

Example2: Find the value of k for which $k x^{2}-4 x+1=0$ has equal roots
$\square b^{2}-4 a c=0$

$$
\begin{aligned}
(-4)^{2}-4 \cdot k \cdot 1 & =0 \\
4 k & =16 \\
k & =4
\end{aligned}
$$

When $k=4$

$$
x=\frac{4 \pm \sqrt{0}}{2 \cdot 4} \Rightarrow x=\frac{1}{2}
$$

Example3: Find the value of k for which $\boldsymbol{x}^{2}+\mathbf{6 x}+\boldsymbol{k}=\mathbf{0}$ has no real roots

$$
\begin{aligned}
b^{2}-4 a c & <0 \\
6^{2}-4 \cdot 1 \cdot k & <0 \\
36 & <4 \mathrm{k} \\
k & >9
\end{aligned}
$$

Example4: Find the value of \mathbf{k} for which $\boldsymbol{x}^{2}+\boldsymbol{k} \boldsymbol{x}+\mathbf{9}=\mathbf{0}$ has different roots

$$
\begin{aligned}
& \square b^{2}-4 a c>0 \\
& k^{2}-4 \cdot 1 \cdot 9>0 \\
& k^{2}-36>0 \\
&(k-6)(k+6)>0 \\
& k<-6 \text { and } k>6
\end{aligned}
$$

\square Example5: Find the points of intersection of the curve $\mathrm{xy}=6$ and the line $\mathrm{y}=9-3 \mathrm{x}$

$$
\begin{aligned}
& x(9-3 x)=6 \rightarrow 3 x^{2}-9 x+6=0 \\
& b^{2}-4 a c=(-9)^{2}-4 \cdot 3 \cdot 6=9>0
\end{aligned}
$$

The equation has two solution, so the line meets the curve at two points

$$
\begin{aligned}
& x_{1,2}=\frac{9 \pm \sqrt{9}}{2 \cdot 3}=\frac{9 \pm 3}{6} \rightarrow x_{1}=1, x_{2}=2 \\
& y_{1}=6, y_{2}=3
\end{aligned} \rightarrow(1,6),(2,3)
$$

\square Example6: Find the value of k for which $k x^{2}-2 x-7=0$ has two real roots

$$
\begin{array}{r}
(-2)^{2}-4 \cdot k \cdot(-7)=4+28 k>0 \\
k>-\frac{1}{7}
\end{array}
$$

\square Example7: Find the value of \mathbf{k} for which $k x^{2}-2 x-7=0$ has repeated roots

$$
2^{2}-4 \cdot 3 \cdot k=4-12 k=0 \quad k=\frac{1}{3}
$$

\square Example8: Find the points of intersection of the curve $x^{2}+y^{2}=25$ and the line $y+2 x=5$

$$
\begin{aligned}
& x^{2}+(5-2 x)^{2}=25 \rightarrow 5 x^{2}-20 x=0 \\
& 5 x(x-4)=0 \rightarrow x_{1}=0, x_{2}=4 \quad y_{1}=5, y_{2}=-3
\end{aligned}
$$

$$
(0,5),(4,-3)
$$

The line $y=\frac{x}{k}+k$, where k is a constant, is a tangent to the curve $4 y=x^{2}$ at the point P. Find
(i) the value of k,
(ii) the coordinates of P.
(i) $\frac{\mathrm{x}^{2}}{4}=\frac{\mathrm{x}}{\mathrm{k}}+\mathrm{k} \rightarrow \mathrm{kx}^{2}-4 \mathrm{x}-4 \mathrm{k}^{2}=0$

Tangent $=\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$

$$
(-4)^{2}-4 \cdot \mathrm{k} \cdot\left(-4 k^{2}\right)=0
$$

$$
16+16 k^{3}=0 \rightarrow k=-1
$$

\square (ii) $y=-x-1, \quad 4 y=x^{2} \rightarrow 4(-x-1)=x^{2}$ $x^{2}+4 x+4=0 \quad \rightarrow \quad x=-2, \quad y=1$

$$
P(-2,1)
$$

A straight line has equation $y=-2 x+k$, where k is a constant, and a curve has equation $y=\frac{2}{x-3}$.
(i) Show that the x-coordinates of any points of intersection of the line and curve are given by the equation $2 x^{2}-(6+k) x+(2+3 k)=0$.
(ii) Find the two values of k for which the line is a tangent to the curve.

The two tangents, given by the values of k found in part (ii), touch the curve at points A and B.
(iii) Find the coordinates of A and B and the equation of the line $A B$.
(i) $\frac{2}{x-3}=-2 x+k \rightarrow-2 x^{2}+6 x+k x-3 k-2=0$

$$
-2 x^{2}+(6+k) x-(3 k+2)=0
$$

$$
2 x^{2}-(6+k) x+(2+3 k)=0
$$

\square (ii) Tangent $=\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$

$$
(6+\mathrm{k})^{2}-4 \cdot 2 \cdot(2+3 k)=0 \rightarrow k=2 \text { or } 10
$$

\square (iii) $y=-2 x+2, y=\frac{2}{x-3} \rightarrow 2 x^{2}-8 x+8=0 \rightarrow(x-2)^{2}=0$ A($2,-2$)

$$
y=-2 x+10, \quad y=\frac{2}{x-3} \rightarrow 2 x^{2}-16 x+32=0 \rightarrow(x-4)^{2}=0
$$

$B(4,2)$

$$
A B:-2=2 m+c, \quad 2=4 m+c \rightarrow-2-2 m=2-4 m
$$

$m=2, c=-6 \rightarrow$ Equation of the line $A B$ is $y=2 x-6$
(i) Express $2 x^{2}-10 x+8$ in the form $a(x+b)^{2}+c$, where a, b and c are constants, and use your answer to state the minimum value of $2 x^{2}-10 x+8$.
(ii) Find the set of values of k for which the equation $2 x^{2}-10 x+8=k x$ has no real roots.
(i) $2 \mathrm{x}^{2}-10 \mathrm{x}+8=2\left(x^{2}-5 x\right)+8=$ $=2\left(x^{2}-2 \cdot \frac{5}{2} x+\frac{25}{4}-\frac{25}{4}\right)+8=2\left(x-\frac{5}{2}\right)^{2}-\frac{25}{2}+8=$ $=2\left(x-2 \frac{1}{2}\right)^{2}-4 \frac{1}{2} ; \quad$ min value is $-4 \frac{1}{2} \quad$ allow $\left(2 \frac{1}{2},-4 \frac{1}{2}\right)$
(ii) $2 \mathrm{x}^{2}-10 \mathrm{x}+8-\mathrm{kx}=0 \rightarrow 2 x^{2}-(10+k) x+8=0$

$$
b^{2}-4 a c<0
$$

$(10+k)^{2}-64<0 \rightarrow k^{2}+20 k+36<0$

$$
\mathrm{k}=-18 \text { or }-2 \quad-18<\mathbf{k}<-2
$$

