Displacement/ Velocity/ Acceleration

Question Paper 1

Level	International A Level	
Subject	Maths	
Exam Board	CIE	
Topic	Kinematics of motion in a straight line	
Sub Topic	Displacement, velocity, acceleration	
Booklet	Question Paper 1	

Time Allowed: 60 minutes

Score: /50

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1	Particles P and Q move on a straight line AOB. The particles leave O simultaneously, with P moving
	towards A and with Q moving towards B. The initial speed of P is $1.3 \mathrm{ms^{-1}}$ and its acceleration in
	the direction OA is $0.1 \mathrm{ms^{-2}}$. Q moves with acceleration in the direction OB of $0.016t \mathrm{ms^{-2}}$, where
	t seconds is the time elapsed since the instant that P and Q started to move from O. When $t = 20$,
	particle P passes through A and particle Q passes through B .

(i)	Given that the speed of Q at B is the same as the speed of P at A, f nd the speed of Q at	time
	t = 0.	[4]

(ii) Find the distance
$$AB$$
. [3]

A particle P starts from rest and moves in a straight line for 18 seconds. For the first 8 seconds of the motion P has constant acceleration $0.25 \,\mathrm{m\,s^{-2}}$. Subsequently P's velocity, $v \,\mathrm{m\,s^{-1}}$ at time t seconds after the motion started, is given by

$$v = -0.1t^2 + 2.4t - k,$$

where $8 \le t \le 18$ and k is a constant.

(i) Find the value of
$$v$$
 when $t = 8$ and hence find the value of k .

(ii) Find the maximum velocity of
$$P$$
. [2]

(iii) Find the displacement of
$$P$$
 from its initial position when $t = 18$. [3]

3 A particle *P* starts from rest at a point *O* and moves in a straight line. *P* has acceleration $0.6t \,\mathrm{m\,s^{-2}}$ at time *t* seconds after leaving *O*, until t = 10.

(i) Find the velocity and displacement from
$$O$$
 of P when $t = 10$. [5]

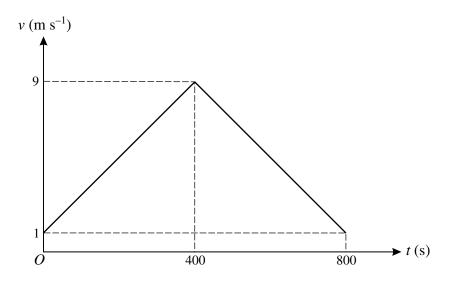
After t = 10, P has acceleration $-0.4t \,\mathrm{m \, s^{-2}}$ until it comes to rest at a point A.

(ii) Find the distance
$$OA$$
. [7]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

A particle P moves in a straight line. P starts from rest at O and travels to A where it comes to rest, taking 50 seconds. The speed of P at time t seconds after leaving O is $v \, \text{m s}^{-1}$, where v is defined as follows.


For
$$0 \le t \le 5$$
, $v = t - 0.1t^2$,
for $5 \le t \le 45$, v is constant,
for $45 \le t \le 50$, $v = 9t - 0.1t^2 - 200$.

- (i) Find the distance travelled by *P* in the first 5 seconds.
- (ii) Find the total distance from O to A, and deduce the average speed of P for the whole journey from O to A.

[3]

A tractor travels in a straight line from a point A to a point B. The velocity of the tractor is $v \, \text{m s}^{-1}$ at time t s after leaving A.

(i)

The diagram shows an approximate velocity-time graph for the motion of the tractor. The graph consists of two straight line segments. Use the graph to find an approximation for

(a) the distance
$$AB$$
, [2]

(b) the acceleration of the tractor for
$$0 < t < 400$$
 and for $400 < t < 800$. [2]

- (ii) The actual velocity of the tractor is given by $v = 0.04t 0.00005t^2$ for $0 \le t \le 800$.
 - (a) Find the values of t for which the actual acceleration of the tractor is given correctly by the approximate velocity-time graph in part (i). [3]

For the interval $0 \le t \le 400$, the approximate velocity of the tractor in part (i) is denoted by $v_1 \text{ m s}^{-1}$.

(b) Express
$$v_1$$
 in terms of t and hence show that $v_1 - v = 0.00005(t - 200)^2 - 1$. [2]

(c) Deduce that
$$-1 \le v_1 - v \le 1$$
. [2]

- 6 A particle P is released from rest at a point on a smooth plane inclined at 30° to the horizontal. Find the speed of P
 - (i) when it has travelled 0.9 m,
 - (ii) 0.8 s after it is released.