PRACTICAL MAXIMUM AND MINIMUM PROBLEMS

As level

Example 1:

The surface area of the solid cuboid is $100 \mathrm{~cm}^{2}$ and the volume is $V \mathrm{~cm}^{3}$.
a. Express h in terms of x.
b. Show that $V=25 x-\frac{1}{2} x^{3}$.
c. Given that x can vary, find the stationary value of V and determine whether this stationary value is a maximum or a minimum.

Surface area $=2 x h+2 x h+2 x^{2}$
Surface area $=4 x h+2 x^{2}$

$$
\begin{array}{ll}
4 x h+2 x^{2}=100 \mathrm{~cm}^{2} & \\
4 x h=100-2 x^{2} & h=\frac{100}{4 x}-\frac{2 x^{2}}{4 x} \\
& \boldsymbol{h}=\frac{25}{x}-\frac{x}{2}
\end{array}
$$

Example 1:

The surface area of the solid cuboid is $100 \mathrm{~cm}^{2}$ and the volume is $V \mathrm{~cm}^{3}$.
a. Express h in terms of x.
b. Show that $V=25 x-\frac{1}{2} x^{3}$.
c. Given that x can vary, find the stationary value of V and determine whether this stationary value is a maximum or a minimum.

Volume $=x^{2} h$

$$
h=\frac{25}{x}-\frac{x}{2}
$$

Volume $=25 x-\frac{x^{3}}{2}$

The surface area of the solid cuboid is $100 \mathrm{~cm}^{2}$ and the volume is $V \mathrm{~cm}^{3}$.
c. Given that x can vary, find the stationary value of V and determine whether this stationary value is a maximum or a minimum.

$$
\begin{array}{ll}
\text { Volume }=25 x-\frac{x^{3}}{2} & x= \pm \sqrt{\frac{50}{3}}= \pm \frac{5 \sqrt{2}}{\sqrt{3}}= \pm \frac{5 \sqrt{6}}{3} \quad x=\frac{5 \sqrt{6}}{3} \\
\frac{d v}{d x}=25-\frac{3}{2} x^{2} & x=\frac{5 \sqrt{6}}{3} \quad \text { Volume }=25 \times \frac{5 \sqrt{6}}{3}-\frac{1}{2} \times\left(\frac{5 \sqrt{6}}{3}\right)^{3} \\
25-\frac{3}{2} x^{2}=0 & \frac{d^{2} v}{d x^{2}}=-3 x \\
x^{2}=\frac{50}{3} & x=\frac{5 \sqrt{6}}{3} \quad \frac{d^{2} v}{d x^{2}}=-3 \times \frac{5 \sqrt{6}}{3}=-5 \sqrt{6}<0
\end{array}
$$

Example 2: The diagram shows a solid cylinder of radius $r \mathrm{~cm}$ and height 2 hcm cut from a solid sphere of radius 5 cm . The volume of the cylinder is $C \mathrm{~cm}^{3}$.
a. Express r in terms of h.
b. Show that $V=50 \pi h-2 \pi h^{3}$
c. Find the value for h for which there is stationary value of V.
d. Determine the nature of this stationary value.

$$
\begin{aligned}
& r^{2}+h^{2}=25 \\
& r^{2}=25-h^{2} \\
& r=\sqrt{25-h^{2}}
\end{aligned}
$$

Example 2: The diagram shows a solid cylinder of radius $r \mathrm{~cm}$ and height 2 hcm cut from a solid sphere of radius 5 cm . The volume of the cylinder is $C \mathrm{~cm}^{3}$.
b. Show that $V=50 \pi h-2 \pi h^{3}$
c. Find the value for h for which there is stationary value of V.
d. Determine the nature of this stationary value.

$$
\begin{aligned}
V & =\pi r^{2} h \\
C & =\pi r^{2} \times 2 h \\
C & =\pi\left(\sqrt{25-h^{2}}\right)^{2} \times 2 h \\
C & =\pi\left(25-h^{2}\right) \times 2 h \\
C & =50 h \pi-2 \pi h^{3}
\end{aligned}
$$

Example 2: The diagram shows a solid cylinder of radius $r \mathrm{~cm}$ and height 2 hcm cut from a solid sphere of radius 5 cm . The volume of the cylinder is $C \mathrm{~cm}^{3}$.
c. Find the value for h for which there is stationary value of V.
d. Determine the nature of this stationary value.

$$
\begin{aligned}
& V=50 h \pi-2 \pi h^{3} \\
& \frac{d V}{d h}=50 \pi-6 \pi h^{2} \\
& 50 \pi-6 \pi h^{2}=0 \\
& 50 \pi=6 \pi h^{2} \\
& h^{2}=\frac{50}{6}=\frac{25}{3}
\end{aligned}
$$

Example 2: The diagram shows a solid cylinder of radius $r \mathrm{~cm}$ and height 2 hcm cut from a solid sphere of radius 5 cm . The volume of the cylinder is $\mathrm{C} \mathrm{cm}^{3}$.
d. Determine the nature of this stationary value.

$$
\begin{aligned}
& \frac{d V}{d h}=50 \pi-6 \pi h^{2} \\
& \frac{d^{2} V}{d h^{2}}=-12 \pi h \\
& h=\frac{5 \sqrt{3}}{3} \quad \frac{d^{2} V}{d h^{2}}=-12 \pi \times \frac{5 \sqrt{3}}{3}=-20 \sqrt{3} \pi<0 \\
& \text { Max }
\end{aligned}
$$

Example 3: The diagram shows a hollow cone with base radius 12 cm and height 24 cm .
A solid cylinder stands on the base of the cone and upper edge touches the inside of the cone. The cylinder has base radius $r \mathrm{~cm}$, height $h \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$.
a. Express h in terms of r.
b. Show that $V=24 \pi r^{2}-2 \pi r^{3}$.
c. Find the volume of the largest cylinder that can stand inside the cone.

$$
\begin{aligned}
& \frac{12}{r}=\frac{24}{24-h} \\
& 12(24-h)=24 r \\
& 24-h=2 r
\end{aligned}
$$

$$
h=24-2 r
$$

Example 3: The diagram shows a hollow cone with base radius 12 cm and height 24 cm .
A solid cylinder stands on the base of the cone and upper edge touches the inside of the cone. The cylinder has base radius $r \mathrm{~cm}$, height $h \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$.
b. Show that $V=24 \pi r^{2}-2 \pi r^{3}$.
c. Find the volume of the largest cylinder that can stand inside the cone.

$$
\begin{aligned}
& V=\pi r^{2} h \quad h=24-2 r \\
& V=\pi r^{2}(24-2 r) \\
& V=24 \pi r^{2}-2 \pi r^{3}
\end{aligned}
$$

Example 3: The diagram shows a hollow cone with base radius 12 cm and height 24 cm .
A solid cylinder stands on the base of the cone and upper edge touches the inside of the cone. The cylinder has base radius $r \mathrm{~cm}$, height $h \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$.
c. Find the volume of the largest cylinder that can stand inside the cone.

$$
\begin{aligned}
& V=24 \pi r^{2}-2 \pi r^{3} \\
& \frac{d V}{d r}=48 r \pi-6 r^{2} \pi \\
& 48 r \pi-6 r^{2} \pi=0 \\
& 6 r \pi(8-r)=0 \\
& r_{1}=0 \quad r_{2}=8
\end{aligned}
$$

$$
\frac{d^{2} V}{d r^{2}}=48 \pi-12 r \pi
$$

$$
r=8
$$

$$
\frac{d^{2} V}{d r^{2}}=48 \pi-12 \times 8 \pi
$$

$$
\frac{d^{2} V}{d r^{2}}=-48 \pi<0 \quad \text { Max }
$$

Example 3: The diagram shows a hollow cone with base radius 12 cm and height 24 cm .
A solid cylinder stands on the base of the cone and upper edge touches the inside of the cone. The cylinder has base radius $r \mathrm{~cm}$, height $h \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$.
c. Find the volume of the largest cylinder that can stand inside the cone.

$$
\begin{aligned}
& V=24 \pi r^{2}-2 \pi r^{3} \\
& r=8 \\
& V=24 \pi \times 8^{2}-2 \pi \times 8^{3} \\
& V=512 \pi
\end{aligned}
$$

Max

