Population Ecology

Population Dynamics

- Population:
 - All the individuals of a species that live together in an area
- Demography:
 - The statistical study of populations, allows predictions to be made about how a population will change

Population Dynamics

- Three Key Features of Populations
 - Size
 - Density
 - Dispersion

Three Key Features of Populations

Size: number of individuals in an area

Three Key Features of Populations

- Growth Rate:
 - Birth Rate (natality) Death Rate (mortality)
 - How many individuals are born vs. how many die
 - Birth rate (b) death rate (d) = rate of natural increase (r)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Three Key Features of Populations

Density: measurement of population per unit area or unit volume

Pop. Density = # of individuals ÷ unit of space

How Do You Affect Density?

- 1. Immigration: movement of individuals into a population
- 2. Emigration: movement of individuals out of a population
- 3. Density-dependent factors: Biotic factors in the environment that have an increasing effect as population size increases (disease, competition, parasites)
- 4. Density-independent factors: Abiotic factors in the environment that affect populations regardless of their density (temperature, weather)

Factors That Affect Future Population Growth

(a) Clumped

(b) Uniform

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Population Dispersion

(c) Random

Three Key Features of Populations

- Dispersion: describes the spacing of organisms relative to each other
 - Clumped
 - Uniform
 - Random

How Are Populations Measured?

- Population density = number of individuals in a given area or volume
- Count all the individuals in a population
- Estimate by sampling
- Mark-Recapture Method

How Do Populations Grow?

- Idealized models describe two kinds of population growth:
 - 1. Exponential Growth

2. Logistic Growth

Carrying Capacity

- Carrying Capacity (k):
 - The maximum population size that can be supported by the available resources
 - There can only be as many organisms as the environmental resources can support

Exponential Growth Curve

Time	Number of	Cells		70-	
			S	10	
0 minutes	1	= 2 ⁰	5	60 -	
20	2	= 2 ¹			
40	4	= 2 ²	ő	50 -	
60	8	= 2 ³	Number of bacterial cells (N)		
80	16	$= 2^4$	ie	40 -	
100	32	= 2 ⁵	ga		
100	32			30 -	
120 (= 2 hours)	64	= 2 ⁶	õ		
3 hours	512	= 2 ⁹	pe	20 -	
Shours	512	= 2	Ε		
4 hours	4,096	= 2 ¹²	PZ	10-	
	.,		_		
8 hours	16,777,216	= 2 ²⁴		0-	
12 hours	68,719,476,736	- 236			
12 110013	00,713,470,730	- 2			

Logistic Growth Curve

Factors Limiting Growth Rate

- Declining birth rate or increasing death rate are caused by several factors including:
 - Limited food supply
 - The buildup of toxic wastes
 - Increased disease
 - Predation

"Booms" and "Busts"

Reproductive Strategies

- R Strategists
 - Short life span
 - Small body size
 - Reproduce quickly
 - Have many young
 - Little parental care
 - Ex: cockroaches, weeds, bacteria

Reproductive Strategies

- K Strategists
 - Long life span
 - Large body size
 - Reproduce slowly
 - Have few young
 - Provides parental care
 - Ex: humans, elephants

Age Distribution

- Distribution of males and females in each age group of a population
- Used to predict future population growth

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 54.2 Age Distributions Change over Time © 2004 Sinauer Associates, Inc. and W. H. Freeman & Co.