What is Physics?

Physics is the study of the natural world around us – from the very large, such as the solar system, to the very small, such as the atom.

PHYSICAL QUANTITIES, SI UNITS AND MEASUREMENT

Chapter 1

At the end of this chapter...

You should be able to:

- show understanding that all physical quantities consist of a numerical magnitude and a unit
- recall the following base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K)
- use the following prefixes and their symbols to indicate decimal sub-multiples and multiples of the SI units: nano (n), micro (µ), milli (m), centi (c), deci (d), kilo (k), mega (M)

At the end of this chapter...

You should be able to:

- show an understanding of the orders of magnitude of the sizes of common objects ranging from a typical atom to the Earth
- describe how to measure a variety of lengths with appropriate accuracy by means of tapes, rules, micrometers and calipers, using a vernier scale as necessary
- describe how to measure a short interval of time including the period of a simple pendulum with appropriate accuracy using stopwatches or appropriate instruments

Why do We Need to Measure Things?

- Let's do this as a class...
- 1. Work in groups of two
- Compare the length between the elbow to the first finger tip.

Physical Quantities and SI Units

Base Quantity	Name of SI unit	Symbol for SI Unit
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric Current	ampere	А
Temperature	kelvin	K
Intensity	candela	cd
Amount of Substance	mole	mol

- A physical quantity when measured may be described in terms of
- 1. <u>A number</u>
- 2. Its unit of measurement

Mass – unit of measurement, kilogram (kg)

Time – unit of measurement, second (s)

Do You Know???

11

Diameter of the Sun

1 400 000 m 1.4 Gm (gigametre)

IIIII

Thickness of a strand of hair

0.2 mm (millimetre)

Prefixes for SI units

Factor	Prefix	Symbol
10 ⁹	giga-	G
10 ⁶	mega-	Μ
10 ³	kilo-	k
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n

Prefixes Exercise 1

•	ess the following qua eir respective SI unit.	ntities		Factor	Prefix	Symbol
	·			10 ⁹	giga-	G
а.	a. One kilometer		1000m or 10 ³ m	10 ⁶	mega-	М
				10 ³	kilo-	k
b.	b. One microsecond =	=	= 0.000001s or 10 ⁻⁶ s		deci-	d
	•			10 ⁻²	centi-	С
с.	c. One centimeter =		0.01m or 10 ⁻² m	10 ⁻³	milli-	m
	-			10 ⁻⁶	micro-	μ
d.	One gram	=	0.001kg or 10 ⁻³ kg	10 ⁻⁹	nano-	n

Prefixes Exercise 1

e.	One miligram	=		Factor	Prefix	Symbol
			0.001g or 10 ⁻³ g =10 ⁻⁶ kg	10 ⁹	giga-	G
			-10 kg	10 ⁶	mega-	М
f.	One millisecond	=	0 0 0 1 1 0 3	10 ³	kilo-	k
			0.001s or 10 ⁻³ s	10 ⁻¹	deci-	d
g.	One minute =			10 ⁻²	centi-	С
			60s	10 ⁻³	milli-	m
h.	One hour	=		10 ⁻⁶	micro-	μ
			3600s	10 ⁻⁹	nano-	n

What does SI units mean?

Système International

International System of Units

The SI unit for length is
() m
metre

Other units for length:

<u>millimetre (mm), centimetre (cm),</u> kilometre (km)

Range	Suitable Instruments	Accuracy of Instruments
Several	Measuring	0.1 cm
metres (m)	Tape	(or 1 mm)
Several centimetres (cm)	Metre/Half- metre Rule	0.1 cm (or 1 mm)
Between 1cm	Vernier	0.01 cm
to 10cm	Calipers	(or 0.1 mm)
Less than 2	Micrometer	0.001 cm
cm	Screw Gauge	(or 0.01 mm)

¹⁸ Measuring Tape

- Length of classroom, car, corridor

□ Metre rule:

Length of desk, book

Parallax Error

What is Parallax Error? It is the error which arises due to incorrect

positioning of the eye.

Parallax Error

How do we avoid Parallax Error?

- Always place the eye vertically above the mark being read.
 OR
- Place the eye in level with the mark being read.

Vernier Calipers

French scientist Pierre Vernier(1580-1637)

Accuracy: 0.01 cm (or 0.1 mm)

How to read off the Vernier Caliper?

Reading = 11 mm + 0.7 mm = 11.7 mm

Vernier Calipers Its structure and its application

23

The inside jaws is used to measure internal diameter of test-tube, ring etc.

Vernier Calipers Its structure and its application

24

The outside jaws is used to measure small length, diameter of test-tube etc.

main scale reading= 4.20 cmvernier scale reading= 0.06 cmActual reading= 4.26 cm

Reading = 19 mm + 0.4 mm = 19.4 mm

Reading = 4 mm + 0.7 mm = 4.7 mm

MEASURE = 1.8 cm + 0.06 cm MEASURE = 1.86 cm

28

MEASURE = 0.7 cm + 0.03 cm

MEASURE = 0.73 cm

Reading = 7 mm + 0.5 mm = 7.5 mm

Vernier Calipers

Zero Error (Vernier Calipers)

Positive Zero Error

Zero Error = ± 0.1 mm If the observed reading = 32.4mm, then Actual measurement = Observed reading - Zero error = $32.4 - (\pm 0.1)$ mm = 32.3 cm

Vernier Calipers

Zero Error (Vernier Calipers)

Negative Zero Error

Zero Error = -0.2 mm If the observed reading = 32.4 mm, then Actual measurement = Observed reading - Zero error = 32.4 - (-0.2) mm = 32.6 mm

Accuracy: 0.001 cm (or 0.01 mm)

Smaller length, such as diameter of thin wire, thickness of a piece of paper etc can be measured by **micrometer screw gauge**.

Sleeve reading =	=	3.0	mm
Thimble reading=	=	0.09	mm
Reading	=	3.09	mm
Reading	=	0.309	cm

Sleeve reading	_	5.5	mm
Thimble reading=	=	0.30	mm
Reading	=	5.80	mm
Reading	=	0.580	cm

Sleeve reading =	=	3.5	mm
Thimble reading=	=	0.06	mm
Reading	=	3.56	mm
Reading	=	0.356	cm
Exercise 1

Reading = 11.5 mm + 0.25 mm = 11.75 mm

Exercise 2

Reading =
$$20.5 \text{ mm} + 0.22 \text{ mm} = 20.72 \text{ mm}$$

Micrometer Screw Gauge

Zero Error (Micrometer Screw Gauge)

Positive Zero Error

Zero Error = ± 0.02 mm If the observed reading = 2.37mm, then Actual measurement = Observed reading - Zero error = $2.37 - (\pm 0.02)$ mm = 2.35 mm

Micrometer Screw Gauge

Zero Error (Micrometer Screw Gauge)

Negative Zero Error

- Stopwatches are used to measure short intervals of time.
- □ **Two types:**
 - Digital stopwatch
 - Analogue stopwatch

□ SI unit of time: second, s

Instruments	Usage	Accuracy of Instruments
Watch/Clock	hrs, mins, sec	1 s
Analogue Stopwatch	mins, sec	0.1 s
Digital Stopwatch	mins, sec	0.01 s
Atomic Clock	about 10 ⁻¹⁰ s	-
Pendulum Clock	hrs, mins, sec	-
Radioactive decay clock	thousand of years	-

- 43 D Watch/Clock
 - used for measuring long intervals of time
 - most modern watches depend on the vibration of quartz crystals to keep time accurately
 - the energy that keeps these crystals vibrating comes from a small battery
 - many watches still make use of coiled springs to supply the needed energy

- 44
- Stopwatch (Analogue/Digital)
- A stopwatch is used to measure short intervals of time.
- stopwatches (analogue and digital)

Analogue Stopwatch accuracy = 0.1 s

Digital Stopwatch accuracy = 0.01 s

- □ Atomic Clock
- Atomic clock also work on oscillation.
- The big difference between a standard clock in your home and an atomic clock is that the oscillation in an atomic clock is between the nucleus of an atom and the surrounding electrons.

Pendulum Clock

46

- clocks make use of a process which is a regularly repeating motion (oscillations), such as the swing of a pendulum
- such oscillations are very regular so period is regular
- most modern clocks depend on the vibration of quartz crystals to keep time accurately
- in clocks that are wound up, elastic potential energy is stored in coiled springs

What is a pendulum?

- A small object suspended by a piece of string or tread is called a simple pendulum.
- The distance from the centre of the pendulum bob to the point of suspension is called the length of the pendulum.
- One complete to and fro movement of the pendulum is called an oscillation.
- □ The time taken for one complete oscillation is called the **period**.
- The distance between the rest position of the pendulum and the extreme point of its oscillation is called the amplitude.

Diagram of a Pendulum

Finding the Period of a Pendulum

- \Box To find the period:
- 1. Take the total time for 20 oscillations.
 Why 20?
- 2. Repeat 2 more times.
- □ 3. Calculate the average time for 20 oscillations.
- \Box 4. Divide by 20 to obtain the period.

What Affects the Period of a Pendulum?

Amplitude?

Length?

When the <u>length increases</u>, the <u>period increases</u>.
 When the <u>length decreases</u>, the <u>period decreases</u>.

When the <u>mass</u> of the bob <u>increases/decreases</u>, there is <u>no effect</u> on the period.

on the <u>moon</u>, the period <u>increases</u>.

Pendulum Exercise

54

The time taken for a pendulum to swing from rest position A to B is 0.8s. What is the time taken for the pendulum to make 20 oscillations?

