Subsets

If all the elements of one set X are also elements of another set Y, then X is said to be a **subset** of Y.

This is written as $X \subseteq Y$.

If a set A is empty then this is called the **empty** set and it is represented by the symbol \oslash . Therefore $A = \oslash$. The empty set is a subset of all sets.

Example 5: Three girls, Winnie, Natalie and Emma, form a set A.

A={Winnie, Natalie, Emma}
All the possible subsets of A are given below:

B={Winnie, Natalie, Emma}
C= {Winnie, Natalie}
D={Winnie, Emma}
E={Natalie, Emma}

 $F = \{ Winnie \}$ $G = \{ Natalie \}$ $H = \{ Emma \}$ $I = \emptyset$

 $A = \{$ Winnie, Natalie, Emma $\}$ $F = \{$ Winnie $\}$ $B = \{$ Winnie, Natalie, Emma $\}$ $F = \{$ Winnie $\}$ $C = \{$ Winnie, Natalie $\}$ $G = \{$ Natalie $\}$ $D = \{$ Winnie, Emma $\}$ $H = \{$ Emma $\}$ $E = \{$ Natalie, Emma $\}$ $I = \emptyset$

The sets *B* and *I* above are considered as subsets of *A*. $B \subseteq A$ and $I \subseteq A$.

However, sets *C*, *D*, *E*, *F*, *G* and *H* are considered **proper subsets** of *A*. $C \subset A$ and $D \subset A \dots$ Similarly, $G \subseteq |H|$ implies that G is not a subset of H. $G \subset |H|$ implies that G is not a proper subset of H.

Example 6: $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

a. List subset B {even numbers} $B=\{2,4,6,8,10\}$

b. List subset C {prime numbers}

 $C = \{2, 3, 5, 7\}$

Exercise 10.2

- 1 P = {whole numbers less than 30}
 - a List the subset Q {even numbers}.
 - **b** List the subset *R* {odd numbers}.
 - c List the subset S {prime numbers}.
 - d List the subset T {square numbers}.
 - e List the subset U {triangle numbers}.
- 2 A = {whole numbers between 50 and 70}
 - a List the subset B {multiples of 5}.
 - b List the subset C {multiples of 3}.
 - c List the subset D {square numbers}.
- 3 $J = \{p, q, r\}$
 - a List all the subsets of J.
 - b List all the proper subsets of J.
- 4 State whether each of the following statements is true or false:
 - a {Algeria, Mozambique} ⊆ {countries in Africa}
 - **b** {mango, banana} \subseteq {fruit}
 - c $\{1, 2, 3, 4\} \subseteq \{1, 2, 3, 4\}$
 - d $\{1, 2, 3, 4\} \subset \{1, 2, 3, 4\}$
 - e {volleyball, basketball} ⊈ {team sport}
 - $f \{4, 6, 8, 10\} \not\subset \{4, 6, 8, 10\}$
 - g {potatoes, carrots} ⊆ {vegetables}
 - h {12, 13, 14, 15} ⊄ {whole numbers}

The universal set

The universal set (ξ) for any particular problem is the set which contains all the possible elements for that problem.

The complement of a set *A* is the set of elements which are in ξ but not in *A*. The complement of *A* is identified as *A'*. Notice that $\xi' = \emptyset$ and $\emptyset' = \xi$.

Example 7:

If $\xi = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A = \{1, 2, 3, 4, 5\}$ what set is represented by A'? A' consists of those elements in ξ which are not in A. Therefore $A' = \{6, 7, 8, 9, 10\}$.

Example 8: If $\xi = \{all \ 3D \ shapes\}$ and $P = \{prisms\}$ what set is represented by P'?

 $P' = \{ all 3D shapes except prisms \}.$

