Chapter 22: Reaction kinetics

Homework questions

1	Th	e compound (CH ₃) ₂ CClCH ₃ undergoes hydrolysis when added to water.							
	(Cl	$H_{3})_{2}CClCH_{3}(l) + H_{2}O(l) \rightarrow (CH_{3})_{2}C(OH)CH_{3}(l) + HCl(aq)$							
	a	Explain why the reaction rate can be measured using conductivity changes.	[2]						
	b	Name the compounds represented by the formulae:							
		i (CH ₃) ₂ CClCH ₃	[1]						
		ii $(CH_3)_2C(OH)CH_3$	[1]						
	c It is found that the rate of reaction is first order with respect to $(CH_3)_2CCICH_3$ and c								
		on the concentration of no other compounds. The mechanism of the reaction is shown belo	W:						
		$(CH_3)_2CClCH_3(l) \rightarrow (CH_3)_2C^{+}CH_3(aq) + Cl^{-}(aq)$							
		$(CH_3)_2C^{+}CH_3(aq) + H_2O(l) \rightarrow (CH_3)_2C(OH)CH_3(l) + HCl(aq)$							
		Which of the two steps is the rate-determining step? Explain your answer.	[2]						
	d	Sketch a graph to show how the rate of reaction depends on the concentration of							
		$(CH_3)_2CClCH_3.$	[2]						
	e	When the compound CH ₃ CH ₂ CH ₂ CH ₂ Cl undergoes nucleophilic substitution with sodium							
		hydroxide it is found that the reaction is first order with respect to CH ₃ CH ₂ CH ₂ CH ₂ Cl and							
		first order with respect to hydroxide ions.							
		i Write a balanced chemical equation for the reaction.	[1]						
		ii What is the order of reaction overall?	[1]						
		iii Write the rate equation.	[1]						
		iv Draw a graph to show how the concentration of $CH_3CH_2CH_2CH_2CI$ varies with time.							
		(Hint: set the starting concentration at 32×10^{-9} mol dm ⁻⁹ .)	[3]						
	t Explain why $(CH_3)_2CCICH_3$ undergoes reaction using the first mechanism shown								
		whilst CH ₃ CH ₂ CH ₂ CH ₂ Cl does not.	[2]						
	g When $(CH_3)_2CCICH_3$ is heated with ethanolic sodium hydroxide, a different reaction take								
		place.	543						
		What type of reaction is this?							
		Write a balanced equation for the reaction.	[1]						
		Iotal	= 18						
2	Hy	drogen peroxide undergoes the following reaction:							
	2H	$H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$							
	a	The reaction is catalysed by iodide ions and is thought to proceed by a two-step mechanism	n:						
		$H_2O_2(aq) + I(aq) \rightarrow H_2O(l) + P$ rate-determining	step						
		$H_2O_2(aq) + P \rightarrow H_2O(l) + ___ + ___$	fast						
		i Write the correct formula for P and complete both equations.	[3]						
		ii What is the evidence from the equations that iodide ions would catalyse the reaction?	[1]						
		iii Write the rate equation for the reaction.	[1]						
		iv Suggest a method to measure the rate of the reaction.	[1]						

b The results below show how the concentration of hydrogen peroxide changes with time.

Time	/ s		0	50	100	150	200	250	300	350	400
[H ₂ O	<u>, s</u> 5]/n	nol dm ^{-3}	1.2	0.780	0.460	0.300	0.190	0.120	0.075	0.045	0.030
	i ii iii	Plot a gra Use the g first order Use the re	ph of tim raph to d with res elationshi	the against etermine spect to hyperate the hyperate to hyperate the hyperate to hyperate the hyperate to hyperate	concentr the half-l ydrogen p $\frac{593}{2}$ to ca	ration of l life for th peroxide. lculate th	nydrogen e reaction e rate con	peroxide n and exp nstant. In	e. lain why clude the	the react	[2] ion is [2] k. [2]
c d	 c The 'strength' of hydrogen peroxide solutions is usually expressed in terms of 'volume'. For example, 10-volume hydrogen peroxide would give 10 cm³ of oxygen for every 1 cm³ of hydrogen peroxide solution. Calculate the concentration, in mol dm⁻³, of a 10-volume solution of hydrogen peroxide. d Draw a hydrogen peroxide molecule, labelling the bond angles in the molecule. [2] Total = 1 										
3 Per a b	 Peroxodisulfate ions (S₂O₈²⁻) and iodide ions react to give sulfate ions (SO₄²⁻) and iodine. a i Write the equation for the reaction and explain why it is a redox reaction. [4] ii Explain why the reaction is quite slow at room temperature. [2] iii How could the reaction rate be measured? Explain why your method would work. [2] b The half-equations for the reactions taking place are given below, along with their standard 										[4] [2] [2] ndard
ſ	$S_2O_8^{2^-}(aq) + 2e^- \rightleftharpoons 2SO_4^{2^-}(aq)$ $2I^-(aq) \rightleftharpoons I_2(aq) + 2e^-$ Use these standard electrode potential values to explain why it is possil take place.							ssible for	$E^{\theta} = +2.01 \text{ V}$ $E^{\theta} = +0.54 \text{ V}$ ble for the reaction to [2]		
d	hal Fe ² Us wo	If-equation $B^{3+} + e^{-} \rightleftharpoons F$ e the half-e ork to cataly student was	is: e ²⁺ equations yse the re	and the station.	standard e	electrode	potential	values to	explain	$E^{\theta} =$ how thes	+0.77 V e ions [6]
u	giv val VC Sn ² Pre	when two ion lues are giv $D_2^+ + 2H^+ + 4^+ + 2e^- \rightleftharpoons$ edict wheth	s to test: ren below re ⁻ \Rightarrow VC Sn ²⁺ er or not	VO_2^+ and VO_2^+ + H ₂ O these ion	I Sn ⁴⁺ . Th	function a	nt half-eq	uations a	nd standa	$E^{\theta} = E^{\theta} =$ nswer.	bode a +1.00 V a +0.15 V [2] b +0.11 = 18