Chapter 19: Lattice energy

Homework questions

1 a The isotopic abundances of sulfur are shown in the table below:

	Isotopes			
Relative atomic mass	32	33	34	36
Relative abundance / %	95	0.76	4.22	0.01

- i Define the term 'relative atomic mass'.
- ii Calculate the relative atomic mass of sulfur to 1 decimal place. [2]
- iii State the names and numbers of the subatomic particles present in the isotope of sulfur ${}^{34}S$.
- b Calcium and sulfur react to form the ionic compound calcium sulfide. Draw a dot-and-cross diagram, including outer electrons only, to show the bonding in calcium sulfide. [3] The lattice energy of calcium sulfide can be calculated using the enthalpy values given below.

	Enthalpy / kJ mol ⁻¹
Enthalpy of atomisation of calcium	+176.6
Enthalpy of atomisation of sulfur	+238.1
First and second ionisation energy of calcium	+1690
First and second electron affinities of sulfur	+485
Standard enthalpy of formation of calcium sulfide	-482

c	Write the	equations	that represent	the following	g processes:
---	-----------	-----------	----------------	---------------	--------------

	i the enthalpy of atomisation of sulfur				[1]			
	ii the second electron affinity of sulfur.				[1]			
d	d Explain why the first electron affinity of sulfur is exothermic whilst the second is							
	endothermic.				[3]			
e	Draw a Born–Haber cycle showing these changes and the lattice energy.							
f	Calculate the lattice energy for calcium sulfide.							
g	Write the balanced symbol equation for the combustion of 1 mol of calcium sulfide.							
h	Using the enthalpy changes of formation listed in the table below, calculate the enthalpy							
	change for the combustion of 1 mol of calcium sulfide.							
	Substance	CaS	SO ₂	CaO				
	Standard enthalpy of formation / kJ mol ⁻¹	-482.4	-296.8	-635.1				
					Total = 24			

- 2 Iodine is an element from Group 17 of the Periodic Table.
 - **a** Iodine is found in seaweed and is extracted when an acidified solution of seaweed extract is treated with hydrogen peroxide.
 - i Complete the equation below:

$$\underline{H}^{+}(aq) + \underline{I}^{-}(aq) + \underline{H}_{2}O_{2}(aq) \rightarrow \underline{I}_{2}(aq) + \underline{H}_{2}O$$
[1]

ii Explain why this is a redox reaction.

[3]

[3]

[2]

Cambridge International AS and A Level Chemistry

3

a

- **b** Calcium iodide is a soluble ionic compound.
 - Use the enthalpy values in the table below to calculate the standard enthalpy of solution of calcium iodide. Draw a Hess's cycle to help explain your answer and give the answer to 3 significant figures. [5]

			Enthalpy change / kJ mol ⁻¹			
		Lattice energy	-2038			
		Standard enthalpy of hydration of calcium ion	-1561.5			
		Standard enthalpy of hydration of iodide ion	-306.7			
		Draw diagrams to show the how the water molecules arrange	a themselves around the			
	п	Draw diagrams to show the now the water molecules arrange themselves around the				
	iii	iii Solid magnesium salts contain more water of crystallisation than calcium salts				
		Fynlain why				
с	Ext	plain why the compound Bel ₂ has a great deal more covalent	character than	-		
-	cal	cium iodide.	[31		
d	Ex	plain how the iodide ion could be identified in a solution of c	alcium iodide.	3]		
e	Iod	ine is much more soluble in cyclohexane than it is in water.	L			
	i	What colour is the solution of iodine in cyclohexane?	[[1]		
	ii	Explain why it is more soluble in cyclohexane than in water	r. [[3]		
			Total = 2	25		
Bai	·ium	sulfate is very insoluble in water. It is produced when sulfu	ric acid is titrated against			
bar	ium	hydroxide. The indicator used for the titration is phenolphth	alein.			
	Ba	$(OH)_2(aq) + H_2SO_4(aq) \rightarrow BaSO_4(s) + 2H_2O(l)$				
Ext	olair	the following observations:				
-	i	the conductivity of the mixture decreases as the sulfuric aci	d is added [[2]		
	ii	the conductivity is at a minimum when the end-point of the	titration is reached and the			
		indicator changes colour	[2]		
	iii	if more sulfuric acid is added the conductivity increases aga	uin. [2]		
b	Bai	rium hydroxide is formed when water is added to barium oxi	de.			
	i	Give the ionic equation for the reaction of water with the or	kide ion.	1]		
	ii	Explain why the lattice energy for barium oxide is less nega	ative than that for			
		magnesium oxide.	1	3]		
c	The	e standard enthalpy of solution of barium chloride is -83 kJ	mol ' whilst the value for			
	ma	gnesium chloride is $-1/1$ kJ mol ⁺ . Explain this difference.	т 1	3		
			I otal =	13		