Chapter 17: Alcohols, esters and carboxylic acids

Homework questions

1 Two isomeric alcohols, X and Y, were shown to have the molecular formula C₄H₁₀O. Under conditions that ensured full oxidation, both alcohols produced carboxylic acids. When passed over heated pumice, the alcohols reacted to produce the products shown below.

	from X	from Y					
a	i	What are the reagents and conditions required for the full oxidation of both alcohols?	[3]				
	ii	Write the equation for the full oxidation of both alcohols, using molecular formulae.					
		Represent the oxidising agent by [O].	[1]				
b	De	scribe and explain the main changes that take place in the infrared spectra of both					
	alc	ohols as they are oxidised to the acids.	[6]				
c	Ide	lentify X. Explain your answer.					
d	Ide	Identify Y. Explain your answer.					
e	i	Write down the structural formula of the carboxylic acid formed by the oxidation of					
		alcohol X.	[1]				
	ii	Write the formula of the ester formed from the reaction of this carboxylic acid and					
		alcohol Y.	[1]				
	iii	Give the equation for the reaction and the conditions required.	[2]				
f	Draw diagrams to show how molecules of Y can form hydrogen bonds.						
		Total	$= 23^{-1}$				

2 There are **eight** alcohols with the molecular formula $C_5H_{11}OH$. Their skeletal formulae are given below:

a	Name all eight alcohols.				
b	Lis				
	i	is a primary alcohol	[2]		
	ii	is a secondary alcohol	[1]		
	iii	is a tertiary alcohol	[1]		
	iv	cannot be dehydrated to give an alkene – explain your answer	[2]		
	v	can be dehydrated to give pent-1-ene as a product	[1]		
	vi will give three products after dehydration, two of which are <i>cis-trans</i> isomers				
		your answer.	[3]		
			Total = 18		

3 Three isomeric compounds, P, R and T, have the molecular formula $C_4H_8O_2$. Information about the compounds is given in the table below.

	Compound		Information					
	Р		P has a sweet smell. P is not miscible with water. P can be formed from					
			ethanol and a carboxylic acid, Q.					
	R		R has a sweet smell. R is not miscible with water. R can be formed from					
			methanol and a carboxylic acid, S.					
	Т		T added to water forms a solution with a pH lower than 7. T contains an					
			unbranched carbon chain.					
a	i	Identify P and	nd Q. Explain how you arrived at your answer.	[3]				
	ii	Give the equ	uation for the formation of P from ethanol and the carboxylic acid Q.	[1]				
b	i	Identify R a	nd S. Explain how you arrived at your answer.	[3]				
	ii	Give the equ	uation for the formation of R from methanol and the carboxylic acid S.	[1]				
c	In the reversible reaction between methanol and S, it was found that when 0.02 mol of S							
	were mixed with 0.01 mol of methanol, 0.005 mol of R were present at equilibrium.							
	i Using the correct formulae for R and S, write the expression for the equilibrium							
	constant for the reaction.							
	ii Calculate the value for the equilibrium constant. Show all your working.							
	iii What is the effect on the equilibrium constant of adding more S to the equilibrium							
		mixture? Ex	plain your answer.	[2]				
d	Ide	entify T. Expl	ain how you arrived at your answer.	[3]				
e	Ex	plain why the	boiling point of P is lower than that of T.	[3]				
			Total	= 20				