Chapter 15: Hydrocarbons

Homework questions

1		nethylbutane and 2,2-dimethylpropane are isomeric hydrocarbons with the molecular formu	la
	C ₅ 1 a b	 H₁₂. i Define the term isomer and explain how it applies to these two compounds. ii Draw the skeletal formulae of both compounds. In an experiment to find the standard enthalpy of combustion (ΔH_c^θ) of both compounds, the temperature of 200 g of water was raised by 30 °C. The mass of 2-methylbutane burned was found to be 0.626 g and the volume of 2,2-dimethylpropane burned was 171 cm³. i Calculate (in kJ) the heat given out by the 2-methylbutane in the experiment. ii Use the data to calculate the standard enthalpy of combustion of 2-methylbutane and give your answer to 3 significant figures. iii Calculate the standard enthalpy of combustion of 2,2-dimethylpropane. 	as [2] [3] [4]
	c d	Construct a Hess's cycle to find the standard enthalpy change of reaction for the conversion of 2-methylbutane to 2,2-dimethylpropane. Use the two values for the standard enthalpies combustion to calculate the enthalpy change for the reaction: 2-methylbutane → 2,2-dimethylpropane Suggest why 2-methylbutane is a liquid at room temperature whilst 2,2-dimethylpropane is	of [4]
	u	a gas at room temperature. Total	[3]
2	shc	hen bromine water was added to a hydrocarbon, X, the bromine was decolorised. Analysis o owed that it contained 85.7% carbon and 14.3% hydrogen. When 50 cm ³ of gaseous X were rned completely in oxygen, 250 cm ³ of carbon dioxide were formed.	f X
	a	Find the empirical formula of X.	[2]
	b	Calculate the molecular formula of X, showing all your working.	[3]
	c	Name the homologous series to which X belongs. Explain your answer.	[3]
	d	There are four structural isomers of X.	Γ-]
		i Define the term structural isomerism.	[2]
		ii Write down the four skeletal formulae and name each isomer.	[4]
	e	One of these isomers exhibits a form of stereoisomerism.	
		i Name the compound.	[1]
		ii Name the type of stereoisomerism exhibited by the compound.	[1]
		iii Draw the skeletal formulae of the two stereoisomers.	[2]
		iv Explain why the stereoisomerism is possible with these two compounds.	[2]
		v Draw a four-carbon-atom section of the addition polymer formed from this compound	. [2]
		Total	= 22

3	Bu	t-1-ene and cyclobutane are isomeric hydrocarbons. Although they have the same molecular	
•		mula, they react very differently with bromine.	
	a	Draw the displayed formulae of both compounds.	[2]
	b	In the presence of ultraviolet (UV) light, cyclobutane reacts with bromine to form	
		1-bromocyclobutane.	
		i Write down the equation for the reaction.	[2]
		ii Use equations to describe and explain the mechanism for the reaction, naming each	
		step in the process.	[7]
	c	But-1-ene reacts with bromine to give 1,2-dibromobutane. Draw the mechanism for the	
		reaction (including curly arrows).	[5]
	d	But-1-ene reacts with hydrogen bromide to give two organic products.	
		i Give the skeletal formulae of both products.	[2]
		ii Identify the major product and explain why more of it is formed than the other product.	[3]
	e	If bromine water is shaken with a liquid hydrocarbon such as cyclohexane, the red/orange	
		bromine water fades and the cyclohexane becomes bright orange/red in colour. Explain this	
		observation.	[3]
		Total 24 ma	ırks