Chapter 13: Nitrogen and sulfur

Homework questions

1	a	Hydrazine has the formula N_2H_4 . It is a colourless volatile liquid and has been used as a propellant (fuel) in rockets.								
		i	Draw a dot-and-cross diagram for a molecule of hydrazine, H ₂ N–NH ₂ .							
		ii	What is the H–N–H bond angle in hydrazine?							
		iii	Hydrazine has the same relative molecular mass as oxygen. However, hydrazine is a							
			liquid at room temperature whilst oxygen is a gas. Explain this difference in properties. [3							
		iv	When hydrazine burns in air it forms water and nitrogen. Write the balanced symbol							
			equation for this reaction. [1]							
		v	Using the data for bond enthalpies given in the table below, find the enthalpy change							
			for the reaction in part iv. [4]							
			1							
			Bond	N–N	N–H	O=0	N≡N	О–Н		
			Bond enthalpy / kJ mol ⁻¹	160	390	496	994	460		
	vi Give the energy produced when 6.4 kg of hydrazine is burned in oxygen.							[3]		
		vii Give two reasons why hydrazine would make a good fuel. [2								
	b	Ex	Explain why hydrazine reacts with acids. [3]							
	c Hydrazine forms a positive ion $N_2H_5^+$ with acids. Explain why there are two H–N–H bond angles in this ion.								I	
									[4]	
									Total = 24	

- The element sulfur forms different oxides and oxy-acids. Two of these acids are sulfuric(IV) acid 2 (H_2SO_3) and sulfuric(VI) acid (H_2SO_4) .
 - The structures of both acids are given below: a

- i Draw a dot-and-cross diagram showing the electrons around the central sulfur atom in H_2SO_3 . [3] [3]
- ii Draw the molecule of H_2SO_3 and state the bond angle present.
- Draw a dot-and-cross diagram showing the electrons around the central sulfur atom in b i H_2SO_4 . [2] [2]
 - ii Draw the molecule of H_2SO_4 and state the bond angle present.

Cambridge International AS and A Level Chemistry

c In order to investigate the reaction between chlorine and the sulfate(IV) ion $(SO_3^{2^-})$, a student bubbled chlorine through a solution of sodium sulfate(IV) and then divided the resulting solution into three portions.

He then carried out the following tests:

- I To the first portion he added aqueous silver nitrate solution acidified with nitric acid. A white precipitate was obtained which was soluble in ammonia.
- II To the second portion he added aqueous barium chloride solution acidified with hydrochloric acid. A white precipitate was produced.

III To the third portion he added universal indicator solution. The solution turned red. Using the above information:

- i Identify the ions produced in this reaction. Give reasons for your answers. [6]
- ii Write equations to show what happened in tests I and II.
- iii Write an ionic equation for the overall reaction and explain why it is a redox reaction. [4]

d In the presence of copper metal, concentrated sulfuric(VI) acid acts as an oxidising agent. One of the products of the reaction is sulfur dioxide.

i Complete the ionic half equations below:

$Cu \rightarrow _+2e^-$		[1]
$H_{2}SO_{1} + H^{+} + e^{-} \rightarrow$	+ SO.	[1]

 $H_2SO_4 + H' + _e \rightarrow _ + SO_2$ ii Write the complete balanced ionic equation for the reaction. [2]

Total = 28

[4]