Chapter 8: Equilibrium

Homework questions

1 Nitrogen dioxide is a toxic, brown, acidic gas that can be formed in the atmosphere by a number of reactions. It exists in equilibrium with its dimer, dinitrogen tetroxide.

The equation for the reversible reaction is given below:

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

2

a The standard enthalpies of formation of these two compounds are given in the table below:

Compound	Standard enthalpy change of formation $\Delta H_{\rm f}^{\theta}$ / kJ mol ⁻¹
NO ₂	+33.2
N ₂ O ₄	+9.2

	i	Calculate the standard enthalpy change of reaction for the reaction of dinitrogen tetroxi	de				
		to form nitrogen dioxide.	[3]				
	ii	Explain the effect of raising the temperature on the position of equilibrium.	[3]				
_	iii	Explain the effect of raising the temperature on the value of K_p for the reaction.	[2]				
b	Gr	ve two conditions for this equilibrium to exist.	[2]				
c	In	In an experiment to investigate the equilibrium between dinitrogen tetroxide to form nitrogen					
	dioxide, the system was allowed to reach equilibrium. It was found that under the conditions of the experiment, 80% of the dinitrogen tetroxide was converted to nitrogen dioxide. The						
	pre	essure of the system was 1×10^5 Pa.					
	i	Write the expression for K_p for this reaction and give its units.	[2]				
	ii	Calculate the value of K_p under these conditions.	[5]				
	iii	If the temperature remains constant, what would the new pressure have to be if the					
		conversion of dinitrogen tetroxide is reduced to 20%?	[5]				
	iv	Comment on the new value for the pressure.	[2]				
d	Αg	A group of students prepared 480 cm ³ nitrogen dioxide for an investigation. As nitrogen					
	dioxide is toxic, they were required to pass the nitrogen dioxide through 0.25 mol dm ⁻³ sodium hydroxide solution. The equation for the reaction is as follows: $2NaOH(aq) + 2NO_2(g) \rightarrow NaNO_2(aq) + NaNO_3(aq) + H_2O(1)$						
	ii	What is the minimum volume of sodium hydroxide solution required to neutralise the					
		nitrogen dioxide.	[3]				
		Total =	= 30				
тh	ьЦа	aber process is an extremely important industrial process that produces ammonia					
Th		ustion for the reaction is:					
1 11	N	$(\alpha) + 2 \Pi (\alpha) \rightarrow 2 N \Pi (\alpha)$					
11 71	$1N_{2}$	$(g) + 311_2(g) \leftarrow 21011_3(g)$					
VV I		the motal fatio of multicent. Hydrogen is 1.5 and the temperature is 450° C and the					
	pre W	r_{12} is a summarised for K for this reaction and size the units	[2]				
a L	wr	The the expression for K_p for this reaction and give the units.	[5]				
D		iculate the value for A_p under these conditions.	[3]				
c	WI	hat information does the value of K_p give about the reaction?	[1]				
-							

d The value of K_p decreases as the temperature increases. What does this tell you about the reaction to form ammonia? Explain your answer. [4]

Cambridge International AS and A Level Chemistry

3

e	If the pressure was changed from 2×10^7 Pa to 1×10^7 Pa what effect would this have on the
	following:

	101	nowing.			
	i	The yield of ammonia? Explain your answer.	[2]		
	ii	The value of $K_{\rm p}$? Explain your answer.	[2]		
f	Dr	aw a dot-and-cross diagram to show the bonding in:			
	i	ammonia	[2]		
	ii	the ammonium ion.	[2]		
g	Th	e H–N–H bond angle in ammonia is 107° whilst in the ammonium ion it is 109.5°.			
0	Ex	plain the difference.	[3]		
h	Dr	aw a diagram to show the hydrogen bonding in ammonia. Show any dipoles present. Tot	[3] al = 27		
Nit	roge	en monoxide (NO) is a very reactive compound that has been found to play a major re	ole as a		
me bet	sser wee	nger molecule in the cardiovascular system. In the atmosphere it is formed by the reac en nitrogen and oxygen.	tion		
Th	e eq	uation for the formation of nitrogen and oxygen in this way is shown below:			
	N_2	$(g) + O_2(g) \rightleftharpoons 2NO(g)$ $\Delta H^{\theta} = +180 \text{ k}.$	$\int mol^{-1}$		
a	Wl	hat is the standard enthalpy change of formation for nitrogen monoxide?			
	Ex	plain your answer.	[2]		
b	In	air, the concentrations of oxygen and nitrogen are 8.42×10^{-3} mol dm ⁻³ and			
3.59×10^{-2} mol dm ⁻³ respectively. At 293 K the equilibrium constant for the reaction is					
	4 ×	$< 10^{-31}$.			
	i	Write the expression for the equilibrium constant (K_c) and give the units.	[2]		
	ii	Calculate the concentration of NO under these conditions. Assume that the			
		concentrations of oxygen and nitrogen are unchanged.	[3]		
	iii	How many NO particles are there per m ³ ?			
		(Avogadro's constant = 6.023×10^{23} ; 1 m ³ = 10^3 dm ³)	[2]		
c	Ni	trogen monoxide reacts with bromine to form nitrosyl bromide (Br-N=O).			
	i	Write the balanced symbol equation for the reaction.	[1]		
	ii	Explain why it is a redox reaction.	[2]		
	iii	Draw a dot-and-cross diagram (outer electrons only) for NOBr.	[3]		
	iv	Draw the molecule and give the value for the bond angle. Explain how you arrived a	ıt		
		your answer.	[4]		
		Tot	al = 19		