Worksheet 12.3

Finding the formula of an organic acid by titration

A titration analysis of a compound can produce some very useful information. A student was given a sample of an organic acid, A , and asked to determine its relative molecular mass, and then suggest its molecular formula.

A sample of the acid was placed in a previously weighed beaker and the following results obtained:
mass of the container and the acid $=10.27 \mathrm{~g}$
mass of container $=8.76 \mathrm{~g}$

1 Calculate the mass of the acid used in the experiment.

The student then worked through the following procedure:

- The sample was transferred to a beaker and $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide were added.
- The contents of the beaker were allowed to react and were then washed into a volumetric flask. The solution was made up to $250 \mathrm{~cm}^{3}$ with distilled water. This was solution B.
- $25.0 \mathrm{~cm}^{3}$ of \mathbf{B} was transferred to a conical flask.

2 What piece of apparatus was used to measure this volume of B?

- Then a few drops of phenolphthalein were added to the conical flask as indicator. A solution of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid was placed in a burette and titrated with the sample of solution \mathbf{B} until an end-point was reached.

3 Phenolphthalein is colourless in acidic solution and pink in alkaline solution.

What was the colour of the solution in the conical flask:
a before the acid was added?
b at the end-point? \qquad

- Three titrations were done. The following diagrams show parts of the burette with the liquid levels at the beginning and the end of each titration.

4 Use the values from the diagrams to complete the following table.

Titration number	1	2	3
Final reading $/ \mathrm{cm}^{3}$			
Initial reading $/ \mathrm{cm}^{3}$			
Volume of hydrochloric acid used $/ \mathrm{cm}^{3}$			
Best titration results (\checkmark)			

Conclusions

Place a tick $(\boldsymbol{\checkmark})$ against the best titration results in the table.
Using these results, the calculated average volume of hydrochloric acid required $=$ cm^{3}.

5 Calculate the number of moles of hydrochloric acid in this average volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid.
\qquad
\qquad
\qquad

6 Hydrochloric acid reacts with sodium hydroxide according to the following equation:

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Deduce the number of moles of sodium hydroxide present in $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B}.
\qquad
\qquad
\qquad

7 From this answer, calculate the number of moles of sodium hydroxide in $250 \mathrm{~cm}^{3}$ of solution B.
\qquad
\qquad

8 Calculate the number of moles of sodium hydroxide in the original $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide.
\qquad
\qquad

9 Subtract the answer in 7 from the answer in 8 . This is the number of moles of sodium hydroxide that reacted with the original sample of the organic acid, A .
\qquad

10 Given the fact that one mole of A reacts with two moles of sodium hydroxide, calculate the number of moles of A in the sample.
\qquad

11 Using your answers to 1 and 10, calculate the relative molecular mass of the acid A.
\qquad
\qquad

The acid A contains two carboxylic acid groups and has the formula $\mathrm{HOOCC}_{x} \mathrm{H}_{y} \mathrm{COOH}$ where x and y are whole numbers.

12 Hence deduce the values of x and y in the formula.

$$
\left(A_{\mathrm{r}}: \mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{H}=1\right)
$$

