Worksheet 12.3

Finding the formula of an organic acid by titration

A titration analysis of a compound can produce some very useful information. A student was given a sample of an organic acid, A, and asked to determine its relative molecular mass, and then suggest its molecular formula.

A sample of the acid was placed in a previously weighed beaker and the following results obtained:

mass of the container and the acid = 10.27 g mass of container = 8.76 g

1 Calculate the mass of the acid used in the experiment.

.....

The student then worked through the following procedure:

- The sample was transferred to a beaker and 50.0 cm³ of 1.00 mol/dm³ sodium hydroxide were added.
- The contents of the beaker were allowed to react and were then washed into a volumetric flask. The solution was made up to 250 cm³ with distilled water. This was solution **B**.
- 25.0 cm³ of **B** was transferred to a conical flask.
- 2 What piece of apparatus was used to measure this volume of B?

- Then a few drops of phenolphthalein were added to the conical flask as indicator. A solution of 0.100 mol/dm³ hydrochloric acid was placed in a burette and titrated with the sample of solution B until an end-point was reached.
- **3** Phenolphthalein is colourless in acidic solution and pink in alkaline solution.

What was the colour of the solution in the conical flask:

- **a** before the acid was added?
- **b** at the end-point?.....

• Three titrations were done. The following diagrams show parts of the burette with the liquid levels at the beginning and the end of each titration.

4 Use the values from the diagrams to complete the following table.

Titration number	1	2	3
Final reading/cm ³			
Initial reading/cm ³			
Volume of hydrochloric acid used/cm ³			
Best titration results (🖌)			

Conclusions

Place a tick (\checkmark) against the best titration results in the table.

5 Calculate the number of moles of hydrochloric acid in this average volume of 0.100 mol/dm³ hydrochloric acid.

6 Hydrochloric acid reacts with sodium hydroxide according to the following equation:

$HCl + NaOH \rightarrow NaCl + H_2O$

Deduce the number of moles of sodium hydroxide present in 25.0 cm³ of solution B.

7	From this answer, calculate the number of moles of sodium hydroxide in 250 cm ³ of solution B.
8	Calculate the number of moles of sodium hydroxide in the original 50.0 cm ³ of 1.00 mol/dm ³ sodium hydroxide.
9	Subtract the answer in 7 from the answer in 8. This is the number of moles of sodium hydroxide that reacted with the original sample of the organic acid, A.
10	Given the fact that one mole of A reacts with two moles of sodium hydroxide, calculate the number of moles of A in the sample.
11	Using your answers to 1 and 10, calculate the relative molecular mass of the acid A.
The nu	e acid A contains two carboxylic acid groups and has the formula $HOOCC_xH_yCOOH$ where x and y are whole mbers.
1 2	Hence deduce the values of x and y in the formula.

 $(A_r: C = 12; O = 16; H = 1)$

.....