26. Electromagnetic induction

Magnetic Flux Definition

- Electromagnetic induction is when an **e.m.f** is induced in a closed circuit conductor due to it moving through a **magnetic field**
- This happens when a conductor cuts through magnetic field lines
- The amount of e.m.f induced is determined by the magnetic flux
- The amount of magnetic flux varies as the coil rotates within the field
 - The flux is the total magnetic field that passes through a given area
 - It is a maximum when the magnetic field lines are perpendicular to the area
 - It is at a minimum when the magnetic field lines are parallel to the area
- The **magnetic flux** is defined as:
- The product of the magnetic flux density and the cross-sectional area perpendicular to the direction of the magnetic flux density
- It is calculated using the equation:

 $\Phi = BxA$, $\Phi = magnetic flux, unit :(Weber= Wb)$

Magnetic Flux Definition

In other words,
magnetic flux is
the number of
magnetic field lines
through a given area

The magnetic flux is maximum when the magnetic field lines and the area they are travelling through are perpendicular

Magnetic Flux Linkage

- The magnetic flux linkage is a quantity commonly used for solenoids which are made of N turns of wire
- Magnetic flux linkage is defined as:

The product of the magnetic flux and the number of turns

It is calculated using the equation:

 $\Phi x N = B x A x N$

- Where:
 - Φ = magnetic flux (Wb)
 - N = number of turns of the coil
 - B = magnetic flux density (T)
 - A = cross-sectional area (m²)
- The flux linkage ΦN has the units of Weber turns (Wb turns)

Magnetic Flux Linkage

- As with magnetic flux, if the field lines are not completely perpendicular to the plane of the area they are passing through
- Therefore, the component of the flux density which is perpendicular is equal to:

 $\Phi xN = BxAxN xcos(\theta)$

Principles of Electromagnetic Induction

- Electromagnetic induction is a phenomenon which occurs when an e.m.f is induced when a conductor moves through a magnetic field
- When the conductor cuts through the magnetic field lines:
 - This causes a change in magnetic flux
 - Which causes work to be done
 - This work is then transformed into electrical energy
- Therefore, if attached to a complete circuit, a current will be induced
- This is known as electromagnetic induction and is defined as:

The process in which an e.m.f is induced in a closed circuit due to changes in magnetic flux.

Principles of Electromagnetic Induction

- This can occur either when:
 - A conductor cuts through a magnetic field
 - The direction of a magnetic field through a coil changes
- Electromagnetic induction is used in:
 - Electrical generators which convert mechanical energy to electrical energy
 - Transformers which are used in electrical power transmission
- This phenomenon can easily be demonstrated with a magnet and a coil, or a wire and two magnets

Experiment 1: Moving a magnet through a coil

 When a coil is connected to a sensitive voltmeter, a bar magnet can be moved in and out of the coil to induce an e.m.f

- When the bar magnet is not moving, the voltmeter shows a zero reading
 - When the bar magnet is held still inside, or outside, the coil, the rate of change of flux is zero, so, there is **no e.m.f induced**
- When the bar magnet begins to move inside the coil, there is a reading on the voltmeter
 - As the bar magnet moves, its magnetic field lines 'cut through' the coil, generating a change in magnetic flux
 - This induces an e.m.f within the coil, shown momentarily by the reading on the voltmeter

- When the bar magnet is taken back out of the coil, an e.m.f is induced in the opposite direction
 - As the magnet changes direction, the direction of the current changes
 - The voltmeter will momentarily show a reading with the opposite sign
- Increasing the speed of the magnet induces an e.m.f with a higher magnitude
 - As the speed of the magnet increases, the rate of change of flux increases
- The direction of the electric current, and e.m.f, induced in the conductor is such that it **opposes** the change that produces it

Factors that will increase the induced e.m.f are:

- Moving the magnet faster through the coil
- Adding more turns to the coil
- Increasing the strength of the bar magnet

Experiment 2: Moving a wire through a magnetic field

- When a long wire is connected to a voltmeter and moved between two magnets, an e.m.f is induced
- Note: there is no current flowing through the wire to start with

- When the wire is not moving, the voltmeter shows a zero reading
 - When the wire is held still inside, or outside, the magnets, the rate of change of flux is zero, so, there is no e.m.f induced
- As the wire is moved through between the magnets, an **e.m.f** is induced within the wire, shown momentarily by the reading on the voltmeter
 - As the wire moves, it 'cuts through' the magnetic field lines of the magnet, generating a change in magnetic flux

- When the wire is taken back out of the magnet, an e.m.f is induced in the opposite direction
 - As the wire changes direction, the direction of the current changes
 - The voltmeter will momentarily show a reading with the opposite sign
- As before, the direction of the electric current, and e.m.f, induced in the conductor is such that it opposes the change that produces it
- Factors that will increase the induced e.m.f are:
 - Increasing the length of the wire
 - Moving the wire between the magnets faster
 - Increasing the strength of the magnets

Faraday's & Lenz's Laws

- Faraday's law tells us the magnitude of the induced e.m.f in electromagnetic induction and is defined as:
- The magnitude of the induced e.m.f is directly proportional to the rate of change in magnetic flux linkage

$$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$$

•Where:

- ε = induced **e.m.f** (V)
- N = number of turns of coil
- $\Delta \phi$ = change in **magnetic flux** (Wb)
- $\Delta t = time interval (s)$

Faraday's & Lenz's Laws

- Lenz's Law gives the direction of the induced e.m.f as defined by Faraday's law:
- The induced e.m.f acts in such a direction to produce effects which oppose the change causing it
- Lenz's law combined with Faraday's law is:

Faraday's & Lenz's Laws

$$\varepsilon = -\mathsf{N} \ \frac{\Delta \Phi}{\Delta t}$$

- This equation shows:
 - When a bar magnet goes through a coil, an e.m.f is induced within the coil due to a change in magnetic flux
 - A current is also induced which means the coil now has its own magnetic field
 - The coil's magnetic field acts in the opposite direction to the magnetic field of the bar magnet
- If a direct current (d.c) power supply is replaced with an alternating current (a.c) supply, the e.m.f induced will also be alternating with the same frequency as the supply