Answers to worksheet questions

Chapter 6

Worksheet 6.1

- 1 The atoms of different *elements* all have different masses. So that we know how the masses of different atoms compare with each other, we use their *relative atomic mass* (*A_r*). This enables us to say that an atom of magnesium, for instance, is *twice* the mass of a carbon-12 atom. Then we can work out the relative formula mass (*M_r*) of a *compound*, which is the sum of all the masses of the atoms in the compound. These masses are very useful when we are measuring out substances to *react* together.
- **2 a** 17
 - **b** 95
 - **c** 160
 - **d** 46
- **3 a** 112 g
 - **b** 168 tonnes

Worksheet 6.2

- **1 a** One mole is the formula mass in grams of the substance $/ 6 \times 10^{23}$ molecules of the substance.
 - **b** The empirical formula is the simplest whole number formula of the substance / formula expressed in the simplest whole number ratio of the elements in the compound.
 - **c** The molecular formula is the actual formula of the compound / formula showing the actual number of atoms making the molecule.

1		
	,	
4	-	

	Mg	0
mass	2.4 g	$4.0 - 2.4 = 1.6 \mathrm{g}$
no. of moles	2.4/24 = 0.1	1.6/16 = 0.1
molar ratio	1	1
formula	MgO	

3		Fe	0
	mass in 100 g	72.4 g	$100 - 72.4 = 27.6 \mathrm{g}$
	no. of moles	72.4/56 = 1.3	27.6/16 = 1.73
	molar ratio	3	4
	formula	Fe ₃ O ₄	

- **4 a** 100/40 = 2.5 moles
 - **b** 22/44 = 0.5 moles
 - **c** 5.8/58 = 0.1 moles
 - **d** 30/120 = 0.25 moles
 - e 6.75/135 = 0.05 moles

Worksheet 6.3

- **1 a** 32 g
 - **b** Sulfur is in excess.
 - c 11g of FeS and 6g of sulfur
 - **d** $56 \times (10/32) = 17.5 \,\text{g}$

2 a H₂O NaCl + NaHCO₃ + NH₃ CO_2 NH₄Cl ++ \rightarrow 2 moles 2 moles 2 moles 2 moles 2 moles 117 g 34 g 36 g 88 g **b** 50 moles **c** 4 moles

- d 318g = 3 moles Na₂CO₃
- 1 mole NaCl gives 0.5 moles of Na₂CO₃
- So 6 moles of NaCl would be needed to get 3 moles (318 g) of $Na_2CO_3 = 351$ g

Worksheet 6.4

```
1 a 60/40 = 1.5 moles
```

- $concentration = 1.5 \text{ mol/dm}^3$
- **b** 1 mol/dm^3
- c $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ 1 mole 1 mole 65 g 4 g Zn = 4/65 moles Zn (4/65)×24000 = 1477 cm³ of hydrogen
- 2 number of moles acid = $(0.5/1000) \times 20 = 0.01$ moles

1 mole NaOH reacts with 1 mole HCl

0.01 moles of NaOH in $25.0 \, \text{cm}^3$

concentration = $(0.01/25) \times 1000 = 0.4$ moles per dm³

- a NaOH + HCl → NaCl + H₂O
 b number of moles acid = (0.10/1000)×15 = 1.5×10⁻³ moles
 c 1.5×10⁻³ moles of NaOH
 - **d** concentration = $(1.5 \times 10^{-3}/10) \times 1000 = 0.15 \text{ mol/dm}^3$
- **4 a** methyl orange
 - **b** $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$
 - **c** number of moles = $(1.0/1000) \times 17.5 = 0.0175$ moles
 - **d** $0.0175/2 = 8.75 \times 10^{-3}$ moles
 - e mass = $8.75 \times 10^{-3} \times 106 = 0.93$ g
 - f 2.5-0.93 = 1.57 g of water of crystallisation
 - g 0.0872 moles of water
 - **h** ratio is 0.00875: 0.0872 = 1:10
 - so x = 10 and formula of washing soda is Na₂CO₃.10H₂O

Worksheet 6.5

- 1 An empirical formula is a formula for a compound which shows the simplest ratio of atoms present.
- **2 a** N: 3.5/14 = 0.25 moles / O: 4/16 = 0.25 moles
 - molar ratio 1:1 empirical formula is NO
 - b S: 50/32 = 1.5625 moles / O: 50/16 = 3.1 moles molar ratio 1:2 empirical formula is SO₂
 - c K: 39/39 = 1 mole / H: 1/1 = 1 mole / C: 12/12 = 1 mole / O: 48/16 = 3 moles molar ratio is 1:1:1:3
 empirical formula is KHCO₃
 - **d** mass of oxygen = 16.0 11.2 = 4.8 g O: 4.8/16 = 0.3 moles / Fe: 11.2/56 = 0.2 moles molar ratio of Fe: O = 2:3empirical formula is Fe₂O₃
- a H: 4.04/1 = 4.04 moles / C: 24.24/12 = 2.02 moles / Cl: 71.72/35.5 = 2.02 moles molar ratio of H: C: Cl = 2:1:1 empirical formula CH₂Cl
 - **b** relative mass of $CH_2Cl = 49.5$ / actual molar mass = 99 g 99/49.5 = 2 therefore molecular formula is $C_2H_4Cl_2$

Worksheet 6.6

- **1 a** to allow you to find the mass of the substances in it / need to subtract it from that obtained when it has substances in it
 - **b** 125.9 117.8 = 8.1 g
 - c 124.7 117.8 = 6.9 g
 - **d** 8.1 6.9 = 1.2 g
 - e $1.2/8.1 \times 100 = 14.8\%$
- 2 Heat the crucible again cool and reweigh it. Repeat until the weight is constant. This is known as heating to constant mass.
- **3** a 208

```
b 18
```

4 moles of $BaCl_2 = 6.9/208 = 0.0332$ moles

moles of water = 1.2/18 = 0.0667 moles

molar ratio of 1:2

therefore x = 2 BaCl₂.2H₂O