Answers to worksheet questions

Chapter 6

Worksheet 6.1

1 The atoms of different elements all have different masses. So that we know how the masses of different atoms compare with each other, we use their relative atomic mass $\left(A_{\mathrm{r}}\right)$. This enables us to say that an atom of magnesium, for instance, is twice the mass of a carbon-12 atom. Then we can work out the relative formula mass $\left(M_{\mathrm{r}}\right)$ of a compound, which is the sum of all the masses of the atoms in the compound. These masses are very useful when we are measuring out substances to react together.
$2 \quad$ a 17
b 95
c 160
d 46
3 a 112 g
b 168 tonnes

Worksheet 6.2

1 a One mole is the formula mass in grams of the substance / 6×10^{23} molecules of the substance.
b The empirical formula is the simplest whole number formula of the substance / formula expressed in the simplest whole number ratio of the elements in the compound.
c The molecular formula is the actual formula of the compound / formula showing the actual number of atoms making the molecule.

2

	Mg	O
mass	2.4 g	$4.0-2.4=1.6 \mathrm{~g}$
no. of moles	$2.4 / 24=0.1$	$1.6 / 16=0.1$
molar ratio	1	1
formula	MgO	

3

	Fe	O
mass in 100 g	72.4 g	$100-72.4=27.6 \mathrm{~g}$
no. of moles	$72.4 / 56=1.3$	$27.6 / 16=1.73$
molar ratio	3	4
formula	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	

4 a $100 / 40=2.5$ moles
b $22 / 44=0.5$ moles
c $5.8 / 58=0.1$ moles
d $30 / 120=0.25$ moles
e $6.75 / 135=0.05$ moles

Worksheet 6.3

1 a 32 g
b Sulfur is in excess.
c 11 g of FeS and 6 g of sulfur
d $56 \times(10 / 32)=17.5 \mathrm{~g}$
2 a $\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{CO}_{2} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaHCO}_{3}$ 2 moles 2 moles 2 moles 2 moles 2 moles
$36 \mathrm{~g} \quad 117 \mathrm{~g} \quad 34 \mathrm{~g} \quad 88 \mathrm{~g}$
b 50 moles
c 4 moles
d $318 \mathrm{~g}=3$ moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$
1 mole NaCl gives 0.5 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
So 6 moles of NaCl would be needed to get 3 moles $(318 \mathrm{~g})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=351 \mathrm{~g}$

Worksheet 6.4

1 a $60 / 40=1.5$ moles
concentration $=1.5 \mathrm{~mol} / \mathrm{dm}^{3}$
b $1 \mathrm{~mol} / \mathrm{dm}^{3}$
c $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
1 mole 1 mole
65 g
$4 \mathrm{~g} \mathrm{Zn}=4 / 65$ moles Zn
$(4 / 65) \times 24000=1477 \mathrm{~cm}^{3}$ of hydrogen
2 number of moles acid $=(0.5 / 1000) \times 20=0.01$ moles
1 mole NaOH reacts with 1 mole HCl
0.01 moles of NaOH in $25.0 \mathrm{~cm}^{3}$
concentration $=(0.01 / 25) \times 1000=0.4$ moles per dm ${ }^{3}$
3 a $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
b number of moles acid $=(0.10 / 1000) \times 15=1.5 \times 10^{-3}$ moles
c 1.5×10^{-3} moles of NaOH
d concentration $=\left(1.5 \times 10^{-3} / 10\right) \times 1000=0.15 \mathrm{~mol} / \mathrm{dm}^{3}$
4 a methyl orange
b $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
c number of moles $=(1.0 / 1000) \times 17.5=0.0175$ moles
d $0.0175 / 2=8.75 \times 10^{-3}$ moles
e mass $=8.75 \times 10^{-3} \times 106=0.93 \mathrm{~g}$
f $2.5-0.93=1.57 \mathrm{~g}$ of water of crystallisation
g 0.0872 moles of water
h ratio is $0.00875: 0.0872=1: 10$
so $x=10$ and formula of washing soda is $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Worksheet 6.5

1 An empirical formula is a formula for a compound which shows the simplest ratio of atoms present.
2 a $\mathrm{N}: 3.5 / 14=0.25$ moles / O: $4 / 16=0.25$ moles molar ratio 1:1 empirical formula is NO
b S: 50/32 $=1.5625$ moles / O: $50 / 16=3.1$ moles molar ratio 1:2 empirical formula is SO_{2}
c $\mathrm{K}: 39 / 39=1$ mole $/ \mathrm{H}: 1 / 1=1 \mathrm{~mole} / \mathrm{C}: 12 / 12=1 \mathrm{~mole} / \mathrm{O}: 48 / 16=3 \mathrm{moles}$ molar ratio is $1: 1: 1: 3$ empirical formula is KHCO_{3}
d mass of oxygen $=16.0-11.2=4.8 \mathrm{~g}$
O: $4.8 / 16=0.3$ moles $/$ Fe: $11.2 / 56=0.2$ moles
molar ratio of $\mathrm{Fe}: \mathrm{O}=2: 3$
empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$
3 a $\mathrm{H}: 4.04 / 1=4.04$ moles / C: $24.24 / 12=2.02$ moles / Cl: $71.72 / 35.5=2.02$ moles molar ratio of $\mathrm{H}: \mathrm{C}: \mathrm{Cl}=2: 1: 1$
empirical formula $\mathrm{CH}_{2} \mathrm{Cl}$
b relative mass of $\mathrm{CH}_{2} \mathrm{Cl}=49.5 /$ actual molar mass $=99 \mathrm{~g}$
99/49.5 = 2
therefore molecular formula is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$

Worksheet 6.6

1 a to allow you to find the mass of the substances in it / need to subtract it from that obtained when it has substances in it
b $125.9-117.8=8.1 \mathrm{~g}$
c $124.7-117.8=6.9 \mathrm{~g}$
d $8.1-6.9=1.2 \mathrm{~g}$
e $1.2 / 8.1 \times 100=14.8 \%$
2 Heat the crucible again cool and reweigh it. Repeat until the weight is constant. This is known as heating to constant mass.

3 a 208
b 18
4 moles of $\mathrm{BaCl}_{2}=6.9 / 208=0.0332$ moles
moles of water $=1.2 / 18=0.0667$ moles
molar ratio of $1: 2$
therefore $x=2 \quad \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

