Answers to worksheet questions

Chapter 5

Worksheet 5.1

1 a All acids are substances that contain hydrogen.
b When an acid is dissolved in water it results in an excess of hydrogen ions, H^{+}.
c When an alkali dissolves in water it results in an excess of hydroxide ions, OH^{-}.
d When an acidic solution reacts with an alkaline solution, H^{+}and OH^{-}ions combine to form water.
e The reaction between an acid and an alkali is called neutralisation.
2 a i An acid is a proton donor / a substance which when dissolved in water has an excess of H^{+}ions / turns blue litmus red / has a pH less than 7 .
ii A base is a proton acceptor / a substance which when dissolved in water has an excess of OH^{-}ions / turns red litmus blue / has a pH higher than 7.
iii An alkali is a base that dissolves in water.
iv A salt is a substance made by the neutralisation of an acid with a base (alkali).
b When acids and bases react, the reaction is called neutralisation. This can be summarised as acid + base \rightarrow salt + water.

Bases are metallic compounds such as oxides or hydroxides. Bases such as magnesium hydroxide are used in medicines to cure indigestion.

Hydrogencarbonates or carbonates can also be used to react with acids to relieve their effects; they are sometimes referred to as antacids.

3 a Substances which change colour according to whether they are in acidic or alkaline solutions are called indicators.
b When a substance dissolves in water it forms a solution which may be acidic, neutral or alkaline.
c The pH scale is used to show how acidic or alkaline a solution is.
d When non-metal oxides dissolve in water, their solutions are often acidic, with a pH less than 7 .
e When metal oxides dissolve in water, their solutions are alkaline, with a pH greater than 7.

Worksheet 5.2

1 a zinc oxide + hydrochloric acid \rightarrow zinc chloride + water
b magnesium oxide + sulfuric acid \rightarrow magnesium sulfate + water
c copper carbonate + nitric acid \rightarrow copper nitrate + water + carbon dioxide
d sodium carbonate + ethanoic acid \rightarrow sodium ethanoate + water + carbon dioxide
e ammonium chloride + sodium hydroxide \rightarrow sodium chloride + ammonia + water
2 a potassium hydroxide + sulfuric acid \rightarrow potassium sulfate + water
$2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
b lithium hydroxide + hydrochloric acid \rightarrow lithium chloride + water $\mathrm{LiOH}+\mathrm{HCl} \rightarrow \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}$
c sodium hydroxide + nitric acid \rightarrow sodium nitrate + water $\mathrm{NaOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
d potassium hydroxide + ethanoic acid \rightarrow potassium ethanoate + water
$\mathrm{KOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O}$
e rubidium hydroxide + nitric acid \rightarrow rubidium nitrate + water
$\mathrm{RbOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{RbNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
3 Stages would be:

- React excess copper(II) oxide with dilute sulfuric acid.
- Stir and heat the mixture in a conical flask using a Bunsen burner, tripod and gauze.
- Filter off the excess black solid and collect the blue solution in another conical flask.
- Concentrate the solution by heating in an evaporating basin.
- Leave to stand and cool slowly to form crystals.
- Filter off the crystals and dry between filter papers.

Worksheet 5.3

1 a He was protesting against the tax on salt imposed by the British - it was a move towards independence.
b People need an intake of salt to stay healthy / salt was used to preserve meat.
c NaCl
d Salt crystals are obtained by heating the solution to concentrate it and then allowing the solution to cool to form crystals; or salt formed by evaporation, leave the solution to stand to allow all the water to evaporate.
2 a iii = a mixture of sodium ions and chloride ions in water
b i calcium sulfate
ii $\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
iii hydration
iv $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Worksheet 5.4

1 a All acids produce hydrogen gas when they react with metals.
b All acids produce carbon dioxide gas when they react with carbonates.
c Weak acids such as ethanoic acid react more slowly than strong ones.

Acid	Other reactant	Salt produced	Other product(s)
hydrochloric acid	magnesium	magnesium chloride	hydrogen
nitric acid	copper carbonate	copper nitrate	carbon dioxide + water
sulfuric acid	magnesium	magnesium sulfate	hydrogen
sulfuric acid	iron	iron(II) sulfate	hydrogen
hydrochloric acid	zinc	zinc chloride	hydrogen
sulfuric acid	sodium carbonate	sodium sulfate	carbon dioxide + water
hydrochloric acid	calcium hydroxide	calcium chloride	water
ethanoic acid	sodium hydroxide	sodium ethanoate	water
nitric acid	ammonia solution	ammonium nitrate	water

Worksheet 5.5

| Acid | Formula | Alkali | Formula |
| :--- | :--- | :--- | :--- | :--- |
| hydrochloric acid | HCl | sodium hydroxide | NaOH |
| sulfuric acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | ammonia solution | $\mathrm{NH}_{4} \mathrm{OH}$ |
| ethanoic acid | $\mathrm{CH}_{3} \mathrm{COOH}$ | limewater | $\mathrm{Ca}(\mathrm{OH})_{2}$ |
| nitric acid | HNO_{3} | | |

2 All the acids contain hydrogen.
3 All the alkalis contain oxygen and hydrogen.
4 The formula of the hydrogen ion is H^{+}.
5 The formula of the hydroxide ion is OH^{-}.
$6 \quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$

Worksheet 5.6

1 a oven cleaner, pH 12
b lemon juice, pH 2
c A neutral solution has a pH of 7 .
2 orange
3 a pH 8 or 9
b neutralisation
c water
4 a citric acid (also have ascorbic acid or vitamin C)
b The lemon juice (pH 2) is $100 \times$ stronger as an acid than the orange juice (pH 4); each pH unit represents a difference of $10 \times$ in strength / it is a logarithmic scale (like the Richter scale for earthquakes, for instance).

Worksheet 5.7

| Name of solid | Formula | Reaction with acid | Cost per
 gram / pence |
| :--- | :--- | :--- | :--- | :---: |
| magnesium carbonate | MgCO_{3} | fizzes | 16.0 |
| calcium carbonate | CaCO_{3} | fizzes | 11.0 |
| magnesium hydroxide | $\mathrm{Mg}(\mathrm{OH})_{2}$ | does not fizz | 7.5 |
| aluminium hydroxide | $\mathrm{Al}(\mathrm{OH})_{3}$ | does not fizz | 22.0 |

$2 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
3 a The tablet was ground to a powder and placed in a flask with a known volume of water and a few drops of methyl orange added as indicator.
The acid of known concentration was added from a burette / a known volume at a time / the mixture was swirled to ensure good mixing / acid was added in this way with good mixing until the indicator just changed colour.

The experiment was repeated using information from the first experiment to obtain an accurate value for the acid needed to completely react with the tablet.

The experiment was repeated for other tablets.
b The acid concentration must be the same so that a direct comparison can be made between the values obtained from the experiments.

4

Solid	Mass of solid to neutralise $20 \mathrm{~cm}^{3}$ of acid/g	Cost/pence
magnesium carbonate	0.7	11.2
calcium carbonate	1.2	13.2
magnesium hydroxide	0.6	4.5
aluminium hydroxide	0.4	8.8

5 A tablet of magnesium hydroxide would appear to be the most cost-effective tablet and has the advantage of not producing a gas as it neutralises the acid. In practice, commercial tablets often contain more than one of these compounds.

