Chapter 22: Reaction kinetics

Homework marking scheme

1	a	The HCl formed consists of H^+ and Cl^- ions in aqueous solution.	[1]
		As the reaction proceeds, the number of ions increases and so the conductivity increases.	[1]
	b	i 2-chloro-2-methylpropane	[1]
		ii 2-methylpropan-2-ol	[1]
	c	The first step is the rate-determining step because it involves just one molecule.	[1]
		Step two involves an ion and a molecule.	[1]
	d		
		↑	
		Rate	
		[CH ₃ CH ₂ CH ₂ CH ₂ Cl]	
		correct scales on axes	[1]
		straight line going through origin.	[1]
	e	i $CH_3CH_2CH_2CH_2CI + OH^- \rightarrow CH_3CH_2CH_2CH_2OH + CI^-$	[1]
		ii second order	[1]
		iii rate = $k [CH_3CH_2CH_2CI] [OH^-]$	[1]
		iv The graph should have the vertical axis labelled as rate and the horizontal axis as time.	[1]
		The line starts at 32×10^{-3} and is a smooth curve.	[1]
		The time taken to go from 32 to 16 to 8 and then to 4, etc. should be a constant.	[1]
	f	For (CH ₃) ₂ CClCH ₃ the intermediate carbonium iron is stabilised by the three electron-	
		donating methyl groups.	[1]
		The CH ₃ CH ₂ CH ₂ CH ₂ Cl has only one alkyl group stabilising the carbonium ion and	
		therefore this route is not favoured.	[1]
	g	i elimination	[1]
	0	ii $(CH_3)_2CClCH_3 + NaOH \rightarrow CH_3(CH_3)C=CH_2 + H_2O + NaCl$	[1]
•			
2	a	$\mathbf{i} \mathbf{P} = \mathbf{O}\mathbf{I}^{-}$	[1]
		$H_2O_2 + I^- \rightarrow H_2O + OI^-$	[1]
		$H_2O_2 + O\Gamma \rightarrow H_2O + \Gamma + O_2$	[1]
		ii the iodide ions are regenerated the end of step 2	[1]
		iii rate = $k [H_2O_2]$	[1]
		iv measure the volume of oxygen produced (at constant pressure)	[1]
	b	i points plotted correctly	[1]
		smooth curve through points	[1]
		ii the half-life for the reaction is 75 s	[1]
		the half-life is constant and therefore the reaction is first order	[1]
		iii $k = \frac{0.693}{75} = 9.24 \times 10^{-3} \text{ s}^{-1}$	
		75	
		take off 1 mark if the unit is incorrect	[2]

c 2	$2H_2O_2$ -	$\rightarrow 2H_2C$	$+ O_2$
c 2	$2H_2O_2$ -	$\rightarrow 2H_2C$) + C

 $1 \text{ dm}^3 \text{ of } \text{H}_2\text{O}_2 \text{ would give } 10 \text{ dm}^3 \text{ of } \text{O}_2$

$$N(H_2O_2) = 2 \times N(O_2) = 2 \times \frac{10}{24} = 0.833 \text{ mol}$$
 [1]

The second mark is for using the equation and for recognising that the number of moles of oxygen can be calculated using the molar volume.

Concentration of hydrogen peroxide = $0.833 \text{ mol dm}^{-3}$. [1]

d

3

correct representation of structure [1] correct bond angles. [1] $S_2O_8^{2-} + 2I^- \rightarrow I_2 + 2SO_4^{2-}$ i a [1] Oxidation number of sulfur changes from +7 to +6, so sulfur is reduced. [1] Oxidation number of iodine changes from -1 to 0, so iodine is oxidised. [1] Therefore, this is a redox reaction. [1] Both reactants are negatively charged and ii [1] therefore repel each other, making it difficult for reaction to occur. [1] iii either use conductivity changes [1] since the number of ions present decreases [1] or using colorimetry [1] since iodine is produced that gives an orange/brown colour and therefore there is a change in absorption. [1] **b** The iodine/iodide half reaction has a more negative electrode potential and therefore the reaction $2e^{-} + I_2 \rightleftharpoons 2I^{-}$ can proceed to the left [1] and the electrons can be accepted by the $S_2O_8^{2-}$ ions. [1] **c** Fe²⁺ ions can react with $S_2O_8^{2-}$ ions: $2Fe^{2+} + 2S_2O_8^{2-} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$. [1] This reaction is quicker because the ions are oppositely charged and therefore attract each other. [1] This reaction can happen because the half-cell reaction: $e^- + Fe^{3+} \rightleftharpoons Fe^{2+}$ has a more negative electrode potential and can therefore proceed to the left forming SO_4^{2-} ions and the electrons produced can reduce the $S_2O_8^{2-}$ ions. [1] The Fe³⁺ ions react with I⁻ ions to give I₂ because the 2e⁻ + I₂ \rightleftharpoons 2I⁻ half-cell reaction has a more negative electrode potential than the Fe^{2+}/Fe^{3+} system [1] and can therefore proceed to the left, forming iodine. [1] The Fe^{3+} ions are reduced to Fe^{2+} , which are therefore regenerated and are therefore catalytic. [1] **d** Only the VO_2^+ ions can act as catalysts because the standard electrode potential of the half-cell reaction involving the catalyst [1]

has to be intermediate between the other two electrode potentials. [1]

[1]