

Chapter 21: Further aspects of equilibria

Homework marking scheme

1 This question is a difficult one and should be used to stretch and challenge.

Therefore, the graph will look like the one shown below:

two axes

2

[1] [1] straight line in correct direction the value of $\log_{10}[H^+]$ can be found from $\log_{10}[H^+] = -pH$ [1] the buffers of pH 4, 7 and 9 therefore have values for $log_{10}[H^+]$ equal to -4, -7 and -9 [1] The $\log_{10}[H^+]$ for 0.1 mol dm⁻³ is -1. [1] The [H⁺] in the 0.1 mol dm⁻³ NaOH = $\frac{1 \times 10^{-14}}{OH^{-1}} = 10^{-13}$. therefore, pH = 13. [1] If a solution of unknown pH is used then the voltage is measured and the value of $\log_{10}[H^+]$ read off from the graph. [1] The oxidation state of the bromine is zero in Br₂ a it rises to +1 in HOBr and therefore is oxidised [1] it decreases to -1 in HBr and is therefore reduced. [1] Simultaneous oxidation and reduction is disproportionation. [1] A strong acid is fully dissociated in aqueous solution. b i [1] A weak acid is only partially dissociated in aqueous solution. [1] in HBr, $[H^+] = 10^{-pH} = 10^{-1} = 0.1 \text{ mol } dm^{-3}$. ii [1] All the HBr has dissociated into H^+ ions and it is therefore a strong acid. [1] iii in HOBr, $[H^+] = 10^{-pH} = 10^{-4.83} = 1.48 \times 10^{-5} \text{ mol dm}^{-3}$. [1] Only a small fraction of the HOBr dissociates into H^+ ions and it is therefore a weak acid. [1] $\mathbf{iv} \quad K_{\mathrm{a}} = \frac{[\mathrm{H}^{+}]_{\mathrm{eq}}[\mathrm{OBr}^{-}]_{\mathrm{eq}}}{[\mathrm{HOBr}]_{\mathrm{eq}}} = \frac{[\mathrm{H}^{+}]^{2}}{[\mathrm{HOBr}]_{\mathrm{start}}}$ [1] therefore, $K_{\rm a} = \frac{(1.48 \times 10^{-5})^2}{0.1} = 2.19 \times 10^{-9} \,\mathrm{mol} \,\mathrm{dm}^{-3}$ [1] c i [1] H∗O∗ Br: ii

> correct drawing [1] correct bond angle. [1]

	d	i	$2H^+(aq) + 2I^-(aq) + OBr^-(aq) \rightarrow H_2O(1) + I_2(aq) + Br^-(aq)$ correct reactants and products	[1]
			balancing.	[1]
		ii	The orange/brown colour in the aqueous layer would fade	[1]
			and the cyclohexane layer would go purple.	[1]
		iii	The I ₂ molecule is nonpolar	[1]
			therefore, it is more soluble in the nonpolar solvent.	[1]
3	a	K_{a}	$= 10^{-pK_a} = 10^{-7.2}$	[1]
-			$5.31 \times 10^{-8} \text{ mol dm}^{-3}$	[2]
			ke 1 mark off if units are incorrect)	
		ĨĦ	$[-1]^+ = \sqrt{K_a \times [H_2 PO_4^-]} = 7.94 \times 10^{-5} \text{ mol dm}^{-3}$	
		(th	is is because $K_a = \frac{[H^+]^2}{[H_2PO_4^-]}$	[1]
			F 1 3	
	1.	-	$I = -\log_{10}[H^+] = 4.10$	[1]
	b	i	A buffer is a mixture of a weak acid and its conjugate base.	[1]
		ii	It resists changes in pH. The equilibrium present in the buffer is $H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$.	[1]
		11	If unwanted H^+ ions are added they combine with the HPO ₄ ²⁻	[1] [1]
		to form the largely undissociated weak acid $H_2PO_4^-$ and are therefore removed, leav		
			the pH near constant.	[1]
			If unwanted OH^- ions are added they are neutralised by the H^+ ions thus disturbing the	[+]
			equilibrium.	[1]
			More $H_2PO_4^-$ dissociates until the K_a returns to its proper value and pH remains near	
			constant.	[1]
		iii	$K_{\rm a} = \frac{[{\rm H}^+][{\rm HPO_4}^{2-}]}{[{\rm H_2PO_4}^-]}$	[1]
		111	$\mathbf{H}_{a} = [\mathbf{H}_{2}\mathbf{PO}_{4}]$	[1]
			$[H_2PO_4^-]$	[1]
			rearranging the formula gives $[H^+] = K_a \times \frac{[H_2PO_4^-]}{[HPO_4^{2-}]}$	[1]
			$[11^{+1}] = (21 - 10^{-8}) = 0.01 = 1.05 = 10^{-8} = 1.1 = -3$	F13
			$[\mathrm{H}^+] = 6.31 \times 10^{-8} \times \frac{0.01}{0.06} = 1.05 \times 10^{-8} \text{ mol dm}^{-3}$	[1]
			$pH = -log_{10}[H^+] = 7.98$	[1]
		iv	The equilibrium $H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$ would be displaced to the left	[1]
			in order to remove the added $H_2PO_4^-$ ions (Le Chatelier's principle).	[1]
			Therefore, $[H^+]$ increases and pH decreases.	[1]
	c	i	Ca^{2+} and PO_4^{3-}	[2]
			$Ca_{3}(PO_{4}^{3-})_{2} \rightleftharpoons 3Ca^{2+} + 2PO_{4}^{3-}$	[1]
			$K_{\rm sp} = [{\rm Ca}^{2+}]^3 [{\rm PO}_4]^{3-}]^2$	[1]
		IV	solubility = $2.48 \times 10^{-6} \text{ mol dm}^{-3}$ [Ca ²⁺] = $3 \times 2.48 \times 10^{-6} = 7.44 \times 10^{-6} \text{ mol dm}^{-3}$	[1]
			$\begin{bmatrix} Ca \\ \end{bmatrix} = 5 \times 2.48 \times 10^{-6} = 7.44 \times 10^{-6} \text{ mol dm}$ and $\begin{bmatrix} PO_4^{3-} \end{bmatrix} = 2 \times 2.48 \times 10^{-6} = 4.96 \times 10^{-6} \text{ mol dm}^{-3}$	[1]
			$K_{\rm sp} = (7.44 \times 10^{-6})^3 \times (4.96 \times 10^{-6})^2 = 1.01 \times 10^{-26} \text{ mol}^5 \text{ dm}^{-15}$	[1] [2]
			$R_{sp} = (7.44 \times 10^{\circ})^{\circ} \times (4.50 \times 10^{\circ})^{\circ} = 1.01 \times 10^{\circ}$ mor dim (take one mark off for incorrect units).	[2]
		v	There is a strong attraction between the $+2$ calcium ions and the -3 phosphate ions.	[1]
		•	Therefore, when the gaseous ions form the ionic lattice a lot of energy is produced as	[+]
			strong ionic bonds are formed.	[1]
		vi	The enthalpies of hydration of the Ca^{2+} ions and the PO_4^{3-} ions are not sufficiently	
			negative (enough)	[1]
			to overcome the large amount of energy needed to produce the gaseous ions from the	
			ionic lattice (-L.E.).	[1]