Chapter 20: Electrochemistry

Homework marking scheme

1 a i

Pb^{2+}
voltmeter and salt bridge
lead and copper
$1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solutions or named solutions
(Do not allow insoluble salts such as lead sulfate.)
ii completes circuit
maintains ionic balance
iii $E_{\text {cell }}=+0.34-(-0.13) \mathrm{V}=0.47 \mathrm{~V}$
iv $\mathrm{Pb}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Pb}^{2+}+\mathrm{Cu}$ [1]
v Arrow which shows the electrons moving from the lead to the copper.
b In both parts of this question you have to show that changing the concentration of the ion changes the position of equilibrium and hence changes the number of electrons produced; this changes the electrode potential and hence the e.m.f. of the cell.
i The equilibrium at the lead electrode is $\mathrm{Pb}(\mathrm{s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$.
If water is added to the solution, the concentration of lead ion decreases and therefore the equilibrium shifts to the right, making more electrons (Le Chatelier's principle).
The electrode becomes more negative [1]
and the cell e.m.f. increases.
ii The equilibrium at the copper electrode is $\mathrm{Cu}(\mathrm{s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
If solid copper sulfate is added to the solution, the concentration of copper ions increases and the equilibrium shifts to the left in order to lower the concentration of copper ions. [1] Therefore, the electrode becomes more positive as the number of electrons decreases. [1]
The e.m.f. of the cell increases.
c i $\quad z$ is the number of electrons involved in the electrode reaction. [1]
ii $\quad E=-0.13+\frac{0.059}{2} \times \log _{10} 0.001$
$E=-0.13+(-0.0885) \mathrm{V}=-0.219 \mathrm{~V}$
iii $E=+0.34+\frac{0.059}{2} \times \log _{10} 2.00$
$E=+0.34+(+0.009) \mathrm{V}=+0.349 \mathrm{~V}$

2 a If the lead(II) bromide is solid then the ions are not free to move and no current will flow.
Note: the converse answer, i.e. if the lead bromide is molten then the ions are free to move and current will flow, will also get 2 marks.
b i At the negative electrode (the cathode)
ii $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$
iii quantity of electricity passed in $C=$ current \times time $=0.4 \times 2 \times 60 \times 60=2880 \mathrm{C}$
quantity of electricity passed in $\mathrm{F}=\frac{2880}{96500}=2.98 \times 10^{-2} \mathrm{~F}$
1 mole of lead requires 2 F of electricity
therefore, number of moles of lead deposited $=1 / 2 \times 2.98 \times 10^{-2}=1.49 \times 10^{-2} \mathrm{~mol}$
mass of lead deposited $=1.49 \times 10^{-2} \times 207.2=3.09 \mathrm{~g}$
c i $2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
ii This is oxidation because the bromide ions lose electrons or the oxidation number of the bromine has increased from -1 to 0 .
iii From the equation for the electrode reaction, 1 mol of bromine requires 2 F of electricity.
Using the number of Faradays of electricity from part biii, $1.49 \times 10^{-2} \mathrm{~mol}$ of bromine are formed
$P V=n R T, V=\frac{n R T}{P}=\frac{1.49 \times 10^{-2} \times 8.314 \times 700}{1.01 \times 10^{5}} \mathrm{~m}^{3}$
$=858 \mathrm{~cm}^{3}$ (using $1 \mathrm{~m}^{3}=10^{6} \mathrm{~m}^{3}$)
d i The lead(II) chloride is an ionic compound.
It has a high melting point.
It conducts electricity when molten because in the liquid state the ions present can carry the current.
ii Lead(IV) chloride is a simple molecular compound.
It has a low melting point.
It does not conduct electricity under any conditions because there are no charge-carrying particles present.
iii

the three-dimensional representation of the molecule
correct bond angle.

3 a i A: hydrogen gas (at 1 atm pressure)
B: salt bridge
C: platinum electrode
D: $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaCl}$
E: chlorine gas (at 1 atm pressure)
the hydrogen and chlorine are both at 1 atm pressure.
ii completes the circuit
maintains an ionic balance
iii filter paper soaked in saturated potassium nitrate solution
b i $10 \mathrm{Cl}^{-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
correct reactants and products
balancing.
ii If Cl^{-}ions are diluted the equilibrium $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$ moves to the right in order to correct the dilution (Le Chatelier's principle).
This means that this half-cell reaction has a less negative electrode potential.
If the H^{+}ions are diluted the equilibrium
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ moves to the left.
This means that this half-cell reaction has a less positive electrode potential.
The electrode potentials are such that the $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$ cannot proceed to the left and the $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ reaction cannot proceed to the right.
c i chlorine is oxidised from Cl_{2} (oxidation number 0) to
$\mathrm{ClO}_{3}{ }^{-}$(oxidation number +5)
chlorine is reduced from Cl_{2} (oxidation number 0) to Cl^{-}(oxidation number -1)
There is simultaneous oxidation and reduction in the same reaction (redox).
ii sodium chlorate(V)
number of moles of chlorine $=\frac{60}{24000}=0.0025 \mathrm{~mol}$
number of moles of $\mathrm{NaClO}_{3}=1 / 3$ number of moles of chlorine $=\frac{0.0025}{3}$
mass of $\mathrm{NaClO}_{3}=n \times M_{\mathrm{r}}=\frac{0.0025}{3} \times 106.6=0.089 \mathrm{~g}$

