Chapter 20: Electrochemistry

Homework marking scheme

1	a	i		
			electron flow high resistance	
			voltmeter	
			salt bridge	
			H H H H H H H H H H	
			$1 \text{ mol } \text{dm}^{-3}$	
			Pb ²⁺	
			voltmeter and salt bridge	Г1 1
			lead and conner	[1]
			1 mol dm^{-3} solutions or named solutions	[1]
			(Do not allow insoluble salts such as lead sulfate)	[1]
		ii	completes circuit	[1]
			maintains ionic balance	[1]
		iii	$E_{\text{coll}} = +0.34 - (-0.13) \text{ V} = 0.47 \text{ V}$	[1]
		iv	$Pb + Cu^{2+} \rightarrow Pb^{2+} + Cu$	[1]
		v	Arrow which shows the electrons moving from the lead to the copper.	[1]
	b	In	both parts of this question you have to show that changing the concentration of the ion	r-1
		cha	anges the position of equilibrium and hence changes the number of electrons produced:	
		this	s changes the electrode potential and hence the e.m.f. of the cell.	
		i	The equilibrium at the lead electrode is $Pb(s) \rightleftharpoons Pb^{2+}(aq) + 2e^{-}$.	[1]
			If water is added to the solution, the concentration of lead ion decreases and therefore t	he
			equilibrium shifts to the right, making more electrons (Le Chatelier's principle).	[1]
			The electrode becomes more negative	[1]
			and the cell e.m.f. increases.	[1]
		ii	The equilibrium at the copper electrode is $Cu(s) \rightleftharpoons Cu^{2+}(aq) + 2e^{-}$	[1]
			If solid copper sulfate is added to the solution, the concentration of copper ions increase	es
			and the equilibrium shifts to the left in order to lower the concentration of copper ions.	[1]
			Therefore, the electrode becomes more positive as the number of electrons decreases.	[1]
			The e.m.f. of the cell increases.	[1]
	c	i	z is the number of electrons involved in the electrode reaction.	[1]
			$E = -0.13 \pm 0.059$ × log $\times 0.001$	[1]
		п	$E = -0.13 + \frac{1}{2} \times 10g_{10} = 0.001$	[1]
			E = -0.13 + (-0.0885) V = -0.219 V	[1]
		iii	$E = +0.34 + \frac{0.059}{1000000000000000000000000000000000000$	[1]
			2	- 1
			E = +0.34 + (+0.009) V = +0.349 V	[1]

2

a	If t	he lead(II) bromide is solid then the ions are not free to move	[1]
	No	te the converse answer i.e. if the lead bromide is molten then the ions are free to move	[1]
	and	I current will flow will also get 2 marks	
b	i	At the negative electrode (the cathode)	[1]
~	ii	$Pb^{2+} + 2e^- \rightarrow Pb$	[1]
	iii	quantity of electricity passed in C = current × time = $0.4 \times 2 \times 60 \times 60 = 2880$ C	[1]
		quantity of electricity passed in F = $\frac{2880}{96500}$ = 2.98 × 10 ⁻² F	[1]
		1 mole of lead requires 2 F of electricity	[1]
		therefore, number of moles of lead deposited = $\frac{1}{2} \times 2.98 \times 10^{-2} = 1.49 \times 10^{-2}$ mol	[1]
		mass of lead deposited = $1.49 \times 10^{-2} \times 207.2 = 3.09$ g	[1]
c	i	$2Br^- \rightarrow Br_2 + 2e^-$	[1]
	ii	This is oxidation because the bromide ions lose electrons or the oxidation number of	
		the bromine has increased from -1 to 0.	[1]
	iii	From the equation for the electrode reaction, 1 mol of bromine requires	
		2 F of electricity. $12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 $	[1]
		Using the number of Faradays of electricity from part b iii, 1.49×10^{-2} mol of bromine	F 1 1
		are formed $DT = 1.40 \times 10^{-2} \times 9.214 \times 700$	[1]
		$PV = nRT, V = \frac{nRT}{R} = \frac{1.49 \times 10^{-1} \times 8.514 \times 700}{1.01 \times 10^{5}} \text{ m}^{3}$	[1]
		$\frac{P}{1.01 \times 10^{5}}$	F11
d	:	= 858 cm (using 1 m = 10 m) The lead(II) chloride is an ionic compound	[1] [1]
u	1	It has a high melting point	[1]
		It conducts electricity when molten because in the liquid state the ions present can	[1]
		carry the current	[1]
	ii	Lead(IV) chloride is a simple molecular compound.	[1]
		It has a low melting point.	[1]
		It does not conduct electricity under any conditions because there are no	
		charge-carrying particles present.	[1]
	iii		
		Cl	
		Pb	
		\times	
		Cl 109.5° Cl	
		the three-dimensional representation of the molecule	[1]
		correct bond angle.	[1]

3

a	i	A: hydrogen gas (at 1 atm pressure)	[1]
		B: salt bridge	[1]
		C: platinum electrode	[1]
		D: 1 mol dm^{-3} NaCl	[1]
		E: chlorine gas (at 1 atm pressure)	[1]
		the hydrogen and chlorine are both at 1 atm pressure.	[1]
	ii	completes the circuit	[1]
		maintains an ionic balance	[1]
	iii	filter paper soaked in	[1]
		saturated potassium nitrate solution	[1]
b	i	$10\text{Cl}^- + 2\text{MnO}_4^- + 16\text{H}^+ \rightarrow 5\text{Cl}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$	
		correct reactants and products	[1]
		balancing.	[1]
	ii	If Cl^- ions are diluted the equilibrium $Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$ moves to the right in	
		order to correct the dilution (Le Chatelier's principle).	[1]
		This means that this half-cell reaction has a less negative electrode potential.	[1]
		If the H ⁺ ions are diluted the equilibrium	
		$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l)$ moves to the left.	[1]
		This means that this half-cell reaction has a less positive electrode potential.	[1]
		The electrode potentials are such that the $Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$ cannot proceed to the	e
		left and the MnO ₄ ^{-(aq)} + 8H ^{+(aq)} + 5e ⁻ \rightleftharpoons Mn ^{2+(aq)} + 4H ₂ O(1) reaction cannot proceed	t
		to the right.	[1]
c	i	chlorine is oxidised from Cl ₂ (oxidation number 0) to	
		ClO_3^{-} (oxidation number +5)	[1]
		chlorine is reduced from Cl_2 (oxidation number 0) to Cl^- (oxidation number -1)	[1]
		There is simultaneous oxidation and reduction in the same reaction (redox).	[1]
	ii	sodium chlorate(V)	[1]
		number of moles of chlorine = $\frac{60}{24000}$ = 0.0025 mol	[1]
		number of moles of NaClO ₃ = $\frac{1}{3}$ number of moles of chlorine = $\frac{0.0025}{3}$	[1]
		mass of NaClO ₃ = $n \times M_r = \frac{0.0025}{3} \times 106.6 = 0.089$ g	[1]