Chapter 17: Alcohols, esters and carboxylic acids

Homework marking scheme

1	a	i	excess	[1]	
			of acidified dichromate	[1]	
			under reflux.	[1]	
		ii	$C_4H_{10}O + 2[O] \rightarrow C_4H_8O_2 + H_2O$	[1]	
	b	this question the changes from alcohol to aldehyde to carboxylic acid should be			
		explained along with the accompanying infrared spectra.			
		At the start there will be a strong absorption at $3200-3600 \text{ cm}^{-1}$			
		due the O–H group in the alcohol. This will disappear.			
		A strong absorption will then appear at 1670–1750 cm^{-1}			
		du	e to the >C=O group in an aldehyde. This will remain.	[1]	
		A	strong, broad absorption will then appear at $2500-3500 \text{ cm}^{-1}$	[1]	
		du	e to the carboxylic acid.	[1]	
	c	X	is $CH_3CH(CH_3)CH_2OH$.	[1]	
		It 1	nust be a primary alcohol because it is oxidised to a carboxylic acid (not a ketone).	[1]	
		It 1	nust have a branched carbon chain, because when dehydrated it gives a branched alkene	.[1]	
d Y is (is CH ₃ CH ₂ CH ₂ CH ₂ OH	[1]	
		It 1	nust be a primary alcohol because it is oxidised to a carboxylic acid (not a ketone).	[1]	
		It g	gives a straight-chain alkene when it is dehydrated.	[1]	
	e	i	CH ₃ CH(CH ₃)COOH	[1]	
		ii	CH ₃ CH(CH ₃)COOCH ₂ CH ₂ CH ₂ CH ₃	[1]	
		iii	$CH_3CH(CH_3)COOH + CH_3CH_2CH_2CH_2OH$		
			\Rightarrow CH ₃ CH(CH ₃)COOCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ + H ₂ O	[1]	
			heat and acid (H ⁺) catalyst	[1]	
	f				

dipoles	[1]
lone pairs on O	[1]
hydrogen bond (shown as dashed line) between molecules	[1]

2	a										
		A:	pentan-1	l-ol	B: pentan-2-ol	C: penta	n-3-ol				
		D:	2-methy	lbutan-1-ol	E: 3-methylbutan-1-	-ol F: 2-met	hylbutan-2-ol				
		G:	3-methy	lbutan-2-ol	H: 2,2-dimethylprop	pan-1-ol					
		1 n	nark per	name				[8]			
	b	i	A, D, E	E and H							
			1 mark	for two correct and	d 2 marks for all four o	correct.		[2]			
		ii B, C and G									
		iii	F					[1]			
		iv	H cann	ot be dehydrated				[1]			
			because	e there is no hydrog	gen atom on the carbon	n adjacent to the carbo	on with O–H.	[1]			
		V	A and I	В				[1]			
		vi	В					[1]			
			C also g	gives these <i>cis–trai</i>	<i>is</i> isomers but does no	ot give the third produ-	ct, pent-1-ene	[1]			
			B gives	s all three.				[1]			
3	a	i	P is CH	I ₃ COOCH ₂ CH ₃ (mo	olecular formula C ₄ H ₈	O ₂)		[1]			
		P is an ester because it has a sweet smell and can be prepared using ethanol and a									
carboxylic acid.								[1]			
		Q is therefore ethanoic acid.									
		ii	CH ₃ CH	$I_2OH + CH_3COOH$	$\rightleftharpoons \mathrm{CH}_3\mathrm{COOCH}_2\mathrm{CH}_3$	$+ H_2O$		[1]			
	b		[1]								
		R is an ester because it has a sweet smell and can be prepared using methanol a carboxylic acid.									
			S is the	refore propanoic ac	cid.			[1]			
		ii $CH_3CH_2COOH + CH_3OH \rightleftharpoons CH_3CH_2COOCH_3 + H_2O$									
	с	$\mathbf{c} \mathbf{i} K_{c} = \frac{[CH_{3}CH_{2}COOCH_{3}][H_{2}O]}{[CH_{3}CH_{2}COOCH_{3}][H_{2}O]}$									
		[CH ₃ CH ₂ COOH][CH ₃ OH]									
		ii	CH ₃ CH	$I_2 COOH + CH_3 OH$	\rightleftharpoons CH ₃ CH ₂ COOCH ₃	+ H ₂ O					
	Number of			CH ₃ CH ₂ COOH	CH ₃ OH	CH ₃ CH ₂ COOCH ₃	H_2O				
	mc	oles									
	At	star	t	0.02	0.01	0	0				
	At	t		0.02 - 0.005	0.01 - 0.005	0.005	0.005				
	equ	uilib	rium	= 0.015	= 0.005						
								[1]			

	Therefore, $K_{\rm c} = \frac{0.005 \times 0.005}{0.015 \times 0.005} 0.005^2 / 0.015 \times 0.005 = 0.33$	[1]
	No units	[1]
iii	no effect	[1]

Only temperature affects the value of the equilibrium constant.
d T has to be a carboxylic acid because its solution has a pH below 7 (acidic). It must be CH₃CH₂CH₂COOH (molecular formula C₄H₈O₂) and because it has an unbranched chain.

The only other carboxylic acid with this formula has a branched chain.

e In P the intermolecular forces are dipole–dipole forces because of the δ+ C=O δ- dipole. [1]
 In T the intermolecular forces are hydrogen bonds formed because of O-H groups present. [1]
 Hydrogen bonds are stronger than dipole–dipole forces. [1]

[1]

[1]

[1]

[1]