Chapter 16: Halogenoalkanes

Homework marking scheme

1	a	add aqueous silver nitrate solution	[1]
		which is partially soluble in ammonia solution, suggests bromide ions	[1] [1]
		which is partially soluble in animolia solution, suggests bronnide lons $\Delta a^+(aa) + Br^-(aa) \rightarrow \Delta a Br(s)$	[1]
	h	$\operatorname{Ag}(\operatorname{aq}) + \operatorname{DI}(\operatorname{aq}) \rightarrow \operatorname{AgDI}(s)$ number of moles	[1]
	U	use $PV = nRT$, rearranged to give $n = \frac{PV}{RT}$	[1]
		$1.01 \times 10^5 \times 61 \times 10^{-6}$	F11
		$n - \frac{1}{8.314 \times 373}$	[1]
		$= 1.99 \times 10^{-3} \text{ mol}$	[1]
		molar mass	
		$=\frac{0.218}{1.99 \times 10^{-3}}=109.6 \text{ g mol}^{-1}$	[1]
		The relative molecular mass of CH_3CH_2Br is 109, which is close to the value above.	[1]
		Note the need to convert the temperature to an absolute temperature.	
	c	i $CH_3CH_2Br + KCN \rightarrow CH_3CH_2CN + KBr$	[1]
		ii The substitution of the Br by CN lengthens the carbon chain.	[1]
		iii	
		$\begin{array}{c cccc} H & H & H & H \\ \hline & & \\ \end{array} \end{array} \qquad \qquad$	
		H - C - C - C - C - C - C - C - C - C -	
		\dot{H} $\begin{pmatrix}\dot{H}$ \dot{H} \dot{H} \dot{H}	
		CN-	
		curly arrow from lone pair or negative charge on cyanide ion	[1]
		dipoles on the C–Br bond	[1]
		curly arrow from the C–Br bond onto the bromine	[1]
	d	aqueous NaOH and reflux:	[2]
		$CH_3CH_2Br + NaOH(aq) \rightarrow CH_3CH_2OH + NaBr$	
		ethanolic NaOH; neat $CH CH + N_0 D_{\pi} + H O$	[2]
	0	$C\Pi_{3}C\Pi_{2}DI + NaO\Pi \rightarrow C\Pi_{2}C\Pi_{2} + NaDI + \Pi_{2}O$	[1] [1]
	C	i $C_{12} + 2D_1 \rightarrow 2C_1 + D_{12}$ ii The oxidation number of the chlorine has decreased from 0 to -1, therefore reduced	[1]
		The oxidation number of the bromine increases from -1 to 0 therefore oxidised	[1]
		iii Bromine is non-nolar	[1]
		The intermolecular forces between bromine molecules are weak van der Waal's forces	[1]
		The intermolecular bonds between polar water molecules	[1]
		are much stronger hydrogen bonds.	[1]
			L .

Cambridge International AS and A Level Chemistry

2	a	In nucleophilic substitution, the nucleophile attacks the electron-deficient carbon. The greater the electronegativity of the halogen, the more electron-deficient the carbon. The easier it is for the nucleophile to attack the carbon.	[1] [1] [1]
	b	I > Br > Cl	[1]
		The lower the bond enthalpy of the C-halogen bond, the easier it is to break it and hence t	the
	c	faster the reaction. Use similar halogenoalkanes, e.g. 1-chlorobutane, 1-bromobutane and 1-iodobutane. Use aqueous silver nitrate mixed with ethanol (to dissolve both the silver nitrate and the	[1] [1]
		halogenoalkane).	[2]
		Add equal (molar) amounts of halogenoalkane.	[1]
		Warm the mixture.	[1]
		Time how long it takes for a precipitate to form.	[1]
	d	They are unreactive	[1]
	е	They lead to the destruction of the ozone layer	[1]
2	•		[1]
3	а		[1]
			[1]
		$(CH_3)_2CCICH_3$ (note that $(CH_3)_3CCI$ is acceptable)	[]]
		Cl	[1]
	b	i 2-methylpropene	[1]
		\setminus	
			[1]
		$ \begin{array}{c} \mathbf{ii} \\ \hline \\ CH_3 & H & CH_3 & H \\ \hline \\ & & & \\ C & - & C & - & C \\ \end{array} $	
		$\begin{vmatrix} & & & \\ CH_3 & H & CH_3 & H \end{vmatrix}$	
		the two methyl groups must be on the same carbon	[1]
		four-carbon section with lines (preferably dashed) on either side.	[1]
	c	but-1-ene	[1]
		$\sim \prime \prime$	[1]
		cic-but-2-ene	[1]
			[1]
			r.1
		/ \ trans-but-2-ene	[1]
			[1]

d

i		
	H ₃ C	
	C^+ CH_3	
	H ₃ C	
	correct methyl groups and central +ve charge	[1]
	correct shape named as trigonal planar	[1]
	correct bond angle (120°).	[1]
ii	The three electron-donating methyl groups reduce the +ve charge density on the centra	1
	carbon, making it more stable.	[1]
iii	$(CH_3)_2CClCH_3 \rightarrow (CH_3)_2C^+(CH_3) + Cl^-$	[1]
	$(CH_3)_2C^+(CH_3) + OH^- \rightarrow (CH_3)_2C(OH)CH_3$	[1]
iv	Heterolytic fission is the first step.	
	The C–Cl bond breaks unevenly, and both of the electrons from the bond go to the Cl	[1]
	to give two oppositely charged ions – a carbocation and a chloride ion.	[1]