Chapter 13: Nitrogen and sulfur

Homework marking scheme

1 a i

b

с

	lone pairs on each nitrogen				
	three bonds per nitrogen, each dot-cross				
	N–N bond, dot-cross.				
ii					
iii					
	intermolecular forces				
	due to the electronegative nitrogen atom and the electron deficient hydrogen.				
	due to the electronegative nitrogen atom and the electron deficient hydrogen. Oxygen is a non-polar molecule and therefore the only intermolecular forces present				
	are induced dipoles (van der Waals forces).				
iv					
v	2 1 2 2 2		[1]		
	$N_2H_4 + O_2$	$N_2 + 2H_2O$			
	$1 \times N-N, 4 \times N-H, 1 \times O=O$	$1 \times N \equiv N, 4 \times O - H$			
	$160 + (4 \times 390) + 496 = 2216$	$994 + 4 \times 460 = 2834$			
	list of bonds				
	list of enthalpies				
	total energy change = $+2216 - (+2834) = -618 \text{ kJ mol}^{-1}$				
	correct value				
	units				
vi	i $6.4 \text{ kg} = 6400 \text{ g}$				
	number of moles of hydrazine = $\frac{6400}{32}$ = 200 mol				
	$\frac{1}{32} = 200 \text{ mor}$				
	enthalpy change = $200 \times -618 \text{ kJ mol}^{-1}$				
	$= -123 600 \text{ kJ mol}^{-1}$				
vii	vii It is a liquid at room temperature, therefore easily stored and transported.				
	Gives a large enthalpy change when it burns in air.				
	It has a lone pair of electrons on each nitrogen				
therefore, can accept protons					
by forming dative covalent bonds.					
In this reaction, one of the nitrogen atoms uses its lone pair to accept a proton.					
	The nitrogen accepting the proton has an N–N bond, three N–H bonds and no lone pair				
therefore, it has an H–N–H bond angle of 109.5°.					

therefore, it has an H–N–H bond angle of 109.5°.[1]The other nitrogen still has its N–N bond, two N–H bonds and a lone pair and therefore
has an H–N–H bond angle of 107°.[1]

2

9	i		
a	I		
		O •×	
		HO [∗] Š [∗] OH	
		one lone pair on sulfur	[1]
		one dot-cross pair of electrons on two oxygen atoms (those attached to an H atom)	[1]
		two dot-cross pairs of electrons on one of the oxygen atoms	[1]
	ii		[-]
		SOH	
		о <u>Š</u> (110H) 0118–119° ОН	
		118–119° OH	
		correct three-dimensional representation of molecule	[1]
		1 if give 118° or 119° for bond angle	[1]
b	i		[+]
U	•	0	
		HO [∗] S [∗] OH	
			F 1 3
		one dot-cross pair of electrons on two oxygen atoms (those attached to an H atom)	[1]
		two dot-cross pairs on one of the oxygen atoms	[1]
	ii	0	
		S'III OH	
		0 109.5° OH	
		correct three-dimensional representation of molecule	[1]
		109.5° for bond angle	[1]
с	i	Cl ⁻ ions are formed.	[1]
e	•	This is shown by the white precipitate with silver nitrate solution that is soluble in	[+]
		ammonia solution.	[1]
		$SO_4^{2^-}$ ions are formed.	[1]
		This is shown by the white precipitate with acidified barium chloride solution.	[1]
		H^+ ions are formed.	[1]
		This is shown by the red colour with universal indicator solution.	[1]
	ii	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$	r-1
		all reactants and products	[1]
		state symbols	[1]
		$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	r-1
		all reactants and products	[1]
		state symbols	[1]
	iii	$Cl_2 + SO_3^{2-} + H_2O \rightarrow 2Cl^- + 2H^+ + SO_4^{2-}$	
		all reactants and products	[1]
		balancing	[1]
		The chlorine is reduced because its oxidation state has decreased from 0 to -1 .	[1]
		The sulfur has been oxidised because its oxidation state has increased from $+4$ to $+6$.	[1]
d	i	$Cu \rightarrow Cu^{2+} + 2e^{-}$	[1]
		$H_2SO_4 + 4H^+ + 2e^- \rightarrow 2H_2O + SO_2$	[1]
	ii	$Cu + H_2SO_4 + 4H^+ \rightarrow Cu^{2+} + 2H_2O + SO_2$	L]
		all reactants and products	[1]
		balancing.	[1]
		-	