Chapter 11: Group 2

Homework marking scheme

1	a	i			ron energy levels increases	[1]		
				rgy level is further from		[1]		
		ii ::::	Positive metal cations	um is greater than 0.217		[1]		
		111	in a sea of delocalised	electrons		[1] [1]		
		iv						
			and carry the current.					
			•	ations slides over anothe	r	[1] [1]		
			the resulting structure is identical (and no disruption occurs).					
		v						
		vi	$i \ 1s^2 2s^2 2p^6 3s^2 3p^6$					
	b	i						
			The outer two electrons of strontium are further from the attractive pull of the nucleus [therefore, strontium loses its outer two electrons more easily and is therefore more reactive. [
			more reactive.					
		ii	- ()					
			ii The aqueous $Sr(OH)_2$ is a strong alkali and gives OH^- ions in solution.					
		iv The aqueous Sr(OH) ₂ reacts with CO ₂ to give a precipitate of SrCO ₃ . Sr ²⁺ (ac) + 2OH ⁻ (ac) + CO (c) + SrCO (c) + 2H O(l)						
			$\operatorname{Sr}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}) + \operatorname{CO}_2(\operatorname{g}) \to \operatorname{Sr}\operatorname{CO}_3(\operatorname{s}) + 2\operatorname{H}_2\operatorname{O}(\operatorname{l})$ or					
			$2OH^{-}(aq) + CO_{2}(g) \rightarrow$	$C \Omega_2^{2-}(s)$		[1]		
		V	0.44 g of Sr = $\frac{0.44}{87.6}$ =	0.005 02 mol		[1]		
			$n(H_2) = n(Sr) = = 0.003$			[1]		
			volume of hydrogen =	$n \times 24 = 0.005 \ 02 \times 24$	$dm^3 = 0.12 dm^3 = 120 cm^3$.	[1]		
2	a		$lg(NO_3)_2 \rightarrow 2MgO + 4N$					
			$r \operatorname{Mg(NO_3)_2} \to \operatorname{MgO} + 2\operatorname{NO_2} + \frac{1}{2}\operatorname{O_2}$					
			prrect symbols					
			alancing.					
	b i 0.890 g magnesium nitrate = $\frac{0.890}{148.3}$ = 0.006 mol				lol	[1]		
			$n(O_2) = \frac{1}{2}n(Mg(NO_3)_2) = \frac{1}{2} \times 0.006 \text{ mol} = 0.003 \text{ mol}$					
	volume of oxygen = $0.003 \times 24 \text{ dm}^3 = 0.072 \text{ dm}^3$ (72 cm ³). ii volume of NO ₂ = 4 × volume of oxygen				$m^3 (72 cm^3).$	[1]		
		ii		[1]				
			$= 0.288 \text{ dm}^3 (288 \text{ cm}^3)$		[1]			
		iii						
				$\frac{\text{Mg}(\text{NO}_3)_2}{57.960}$	H ₂ O			
			No of mol	57.86%	42.14			
			No. of mol	$\frac{57.86}{148.3} = 0.39$	$\frac{42.14}{18} = 2.34$			
			Relative number	148.3	18			
				$\frac{0.39}{0.20} = 1$	$\frac{2.34}{0.20} = 6$			

Formula is Mg(NO₃)₂.6H₂O

[3]

0.39

0.39

Cambridge International AS and A Level Chemistry

c	It would be much harder to decompose.				
	The nitrates are harder to decompose as the group is descended.				
d	i	No reaction would be seen.	[1]		
		The solubility of the metal hydroxides increase as the group is descended.	[1]		
	ii	A white precipitate would form.	[1]		
		The solubility of the Group 2 sulfates decrease as the group is descended.			
		(BaSO ₄ is very insoluble.)	[1]		
e	i	radium hydroxide	[1]		
		$O^{2^{-}}(g) + H_2O(aq) \rightarrow 2OH^{-}(aq)$	[1]		
	ii				
		$\left[\operatorname{Ra} \right]^{2+} \left[\overset{*}{\cdot} \overset{\bullet}{O} \overset{*}{\cdot} \right]^{2-}$			
		radium ion with 2+ charge and with no electrons in outer shell	[1]		
		oxide ion with 2- charge and with eight electrons in outer shell	[1]		
		two of the eight oxide electrons being different to the other six.	[1]		