Chapter 9: Rates of reaction

Homework marking scheme

I wo lines with higher temperature line shifted to right and down as shown.	[I]
Both lines must start at origin $(0,0)$ and not touch the horizontal axis at the right-hand side.	[1]
Correctly labelled axes.	[1]
Line for activation energy.	[1]
At a higher temperature, a greater proportion of particles have energy greater than E_{act} .	[1]
The proportion of successful collisions is greater at the higher temperature.	[1]
Also, the particles moving around more quickly means an increased frequency of collisions.	[1]

2

a	i	Catalyst: a substance that speeds up a chemical reaction	[1]
		and is unchanged chemically at the end of the reaction.	[1]
		Heterogeneous: the catalyst is in a different state to the reactants and products.	[1]
	ii	Particles diffuse to the surface	[1]
		adsorption/chemisorption takes place	[1]
		bonds weaken/reaction occurs	[1]
		particles desorb from surface/desorption takes place.	[1]
	iii	· · ·	

axes	[1]	
line starting at origin (0,0)	[1]	
$E_{\rm act}$ of catalysed reaction lower than that of uncatalysed reaction.		
Area under the catalysed part of graph greater than that under the uncatalysed part.	[1]	
Therefore, a greater proportion of molecules greater than E_{act} .	[1]	
iv $K_p = \frac{P^4(\text{NO}) \times P^6(\text{H}_2\text{O})}{P^4(\text{NH}_3) \times P^5(\text{O}_2)}$	[1]	
units = Pa (10 pressure on top of expression, 9 pressure on bottom)	[2]	
v Exothermic because the wire glowed red hot as the reaction took place.	[1]	
$i -46 \text{ kJ mol}^{-1}$		
the value	[1]	
the minus sign (because the enthalpy of formation is the reverse reaction).	[1]	

b

Course of reaction

	correct and labelled axes	[1]
	two profiles, with the uncatalysed higher in energy than the catalysed	[1]
	arrows labelled correctly	[1]
	products at a higher energy than the reactants.	[1]
iii	$E_{\rm act}(\rm reverse) = 162 - 92 = 70 \text{ kJ mol}^{-1}$	[1]