Chapter 8: Equilibrium

Homework marking scheme

1

a	i	$\Delta H_{\text{reaction}} = \Delta H_{\text{f}}(\text{pr}$	oducts) – $\Delta H_{\rm f}$	reactants)		[1]		
		= 2(+33.2) - 9.2						
		$=+57.2 \text{ kJ mol}^{-1}$						
	ii	ii The equilibrium will shift to the right-hand side						
		because the forward reaction is endothermic.						
		Heating favours th	ne reaction that	cools down	(Le Chatelier's principle)	[1]		
	iii	Equilibrium shifts	to the right-ha	nd side and	the pressure of the NO_2 will increase.	[1]		
		Therefore, $K_{\rm p}$ will	increase.			[1]		
b	An	v two from:				r.1		
	Th	e system is a closed	system					
	The system is a closed system. The rate of forward reaction = rate of backward reaction							
	Th	e macroscopic prop	erties pressure	temperatu	re etc are constant	[2]		
	1 11	$P^2(NO)$	erries, pressure	, temperata		[~]		
c	i	$K_{\rm p} = \frac{T(\rm INO_2)}{D(\rm NLO_2)}$				[1]		
		$P(N_2O_4)$		2				
	units = Pa because $K = \frac{(\text{pressure})^2}{(\text{pressure})^2}$							
	$rac{1}{rac}{1}{rac}{1}{rac}}}}}}}}}}}}}}}}}}}}}}}}}}}} } } } } }$					[1]		
	ii	$N_2O_4(g) \rightleftharpoons 2NO_2(g)$	g)					
			$N_2O_4(g)$	$2NO_2(g)$	Explanation			
		At start	1 mol	0 mol				
		At equilibrium	1 - 0.8 mol	1.6 mol	for every mol of N_2O_4 converted 2 mol			
		in equinorium	= 0.2 mol	1.0 1101	of NO ₂ are formed			
			0.2 1101		total quantity of gases = 1.8 mol			
					total quantity of gases – 1.6 mol	_ רכו		
				0.2		[4]		

partial pressure of N₂O₄ = $1 \times 10^5 \times \frac{0.2}{1.8} = 0.111 \times 10^5$ Pa

partial pressure of NO₂ = $(1 - 0.111) \times 10^5$ Pa = 0.889×10^5 Pa [1]

$$K_{\rm p} = \frac{(0.889 \times 10^5)^2}{0.111 \times 10^5}$$
[1]

$$7.12 \times 10^5$$
 Pa [1]

iii In this question K_p remains constant because the temperature remains constant, only *P* changes

	$N_2O_4(g)$	$2NO_2(g)$	Explanation
At start	1 mol	0 mol	
At equilibrium	1 - 0.2 mol	0.4 mol	For every mol of N ₂ O ₄ converted, 2 mol
	= 0.8 mol		of NO ₂ are formed
			total quantity of gases = 1.2 mol

[2]

partial pressure of N₂O₄ =
$$\frac{0.8}{1.2} \times P = 0.667P$$

partial pressure of NO₂ =
$$\frac{0.4}{1.2} \times P = 0.333P$$
 [1]

$$K_{\rm p} = \frac{(0.333P)^2}{0.667P} = 7.12 \times 10^5 \,\mathrm{Pa}$$
[1]

		new pressure = 42.6×10^5 Pa	[1]
	iv	The new pressure is higher than before, which would favour the side of the equilibriun	1
		with fewer gas molecules.	[1]
		Therefore, there is a lower conversion of N_2O_4 into NO_2 .	[1]
d	i	The oxidation state of nitrogen in $NO_2 = +4$	[1]
		in $NaNO_2$ it is +3, therefore reduced	[1]
		in NaNO ₃ it is $+5$, therefore oxidised; hence, a redox reaction.	[1]
	ii	number of mol of NaOH = number of mol of NO ₂ = $\frac{480}{24000}$ = 0.02 mol	[1]
		$V = \frac{n}{C} = \frac{0.02}{0.25}$	[1]
		$= 0.0800 \text{ dm}^3 \text{ or } 80 \text{ cm}^3$	[1]
a	$K_{\rm p}$	$= \frac{P^2(\mathrm{NH}_3)}{P(\mathrm{N}_2) \times P^3(\mathrm{H}_2)}$	[2]

Unit is
$$Pa^{-2}$$
 because $K_p = \frac{(pressure)^2}{(pressure)^4}$ [1]

b

2

	N ₂ (g)	3H ₂ (g)	2NH ₃ (g)	
Number of mol	1 - 0.15 = 0.85	3-0.45 = 2.55	0.30	total number of mol = 3.7
Partial pressures	$\frac{0.85}{3.7} \times 2 \times 10^{7}$ = 4.59 × 10 ⁶ Pa	$\frac{2.55}{3.7} \times 2 \times 10^7$ = 1.38 × 10 ⁷ Pa	$\frac{0.30}{3.7} \times 2 \times 10^7$ = 1.62 × 10 ⁶ Pa	
				[3

Therefore,
$$K_{\rm p} = \frac{(1.62 \times 10^6)^2}{(4.59 \times 10^6) \times (1.38 \times 10^7)^3} = 2.18 \times 10^{-16} \,{\rm Pa}^{-2}$$
 [2]

c	Th	e extent to which the equilibrium moves to the right-hand side (the products).	[1]
d	A	decrease in K_p means a lower yield of products.	[1]
	Inc	creasing the temperature favours the backward reaction.	[1]
	Th	erefore, the backward reaction is endothermic.	[1]
	Th	e forward reaction is exothermic.	[1]
e	i	The yield of ammonia would decrease	[1]
		because the decrease in pressure would favour the side of the reaction with more	
		molecules to counteract the decrease in pressure (Le Chatelier's principle).	[1]
	ii	$K_{\rm p}$ does not change.	[1]
		Only temperature affects the value of $K_{\rm p}$	[1]
f	i	••••••••••••••••••••••••••••••••••••••	[-]
-	-	H	
		ŧŇ ŧH	
		Ĥ	
		three dot-cross bonds	[1]
		the lone pair on the nitrogen	[1]
	ii		
		H:N:H	
		Ĥ	
		three dot-cross bonds	[1]
		dative covalent bond with fourth hydrogen	[1]

Cambridge International AS and A Level Chemistry

3

g	Th	e lone pair on the nitrogen in ammonia repels the covalent bonds more than the dative	
	co	valent bond in the ammonium ion.	[1]
	Th	erefore, the bond angle in ammonia is less than in the ammonium ion.	[1]
h			ι ι
		Н Н	
	δ-	$\delta_{\perp} = \delta_{\perp} = \delta_{\perp}$	
	:N	— H	
		Н Н	
	co	rrect dipoles	[1]
	lor	he pair electrons on the nitrogen with the hydrogen bond	[1]
	101	dre sen hand as a dashad line	
	ny	urogen bond as a dashed line.	[I]
а	+9	0 kJ mol^{-1}	[1]
	2 r	nol of NO are formed from its constituent elements in their standard states. Therefore	ι ι
	4.	ida h. 2	Г17
	uiv		[1]
h	i	$K_{a} = \frac{[NO]^{2}}{[NO]^{2}}$	[1]
N.	-	$[N_2][O_2]$	[+]
		No units	۲1T
	::	$[NO]^2 = [N] [[O]] \times K$	[1]
	11	$[NO] = [N_2] [O_2] \times K_c$	
		$[NO] = \sqrt{(3.59 \times 10^{-2}) \times (8.42 \times 10^{-3}) \times (4 \times 10^{-31})} = 1 \times 10^{-17} \text{ mol dm}^{-3}$	
		rearranging formula to give [NO]	[1]
		correct answer	[1]
		units	[1]
	:::	$[NO] = 1 \times 10^{-17} \text{ mol } dm^{-3} = 1 \times 10^{-17} \times 10^3 \text{ mol } m^{-3}$	[1]
	111	$[100] = 1 \times 10^{-11}$ mol uni $= 1 \times 10^{-17} \times 10^{-10}$ mol mi = (.022) 10^{23} 1 1 10^{-17} 10^{3} merticles = (.022) 10^{9} merticles mercu ³	
		$= 6.025 \times 10^{\circ} \times 1 \times 1 \times 10^{\circ} \times 10^{\circ}$ particles $= 6.025 \times 10^{\circ}$ particles per m	
		converting the number of moles per dm ³ to per m ³	[1]
		finding the number of particles using Avogadro's constant.	[1]
c	i	$2NO + Br_2 \rightarrow 2NOBr$	
	ii	nitrogen; its oxidation state increases from $+2$ to $+3$, therefore oxidised	[1]
		bromine: its oxidation decreases from 0 to -1 therefore reduced: combination means a	ι ι
		raday rangetian	Г17
	•••	redox reaction.	[1]
	m	•• XX X •	
		• Br • N × O	
		double bond between N and O (two pairs of electrons)	[1]
		single N–Br bond (one pair of electrons)	[1]
		all three atoms having outer octet	[1]
	iv		[+]
	1 V	less than 120°	
		Br O	
		N	[1]
		The shape is non-linear	[1]
		around the central nitrogen the electron count is: $N = 5e$: $\Omega = 2e$: $Rr = 1e$	[1]
		loss 2a for the double hand gives a total of C_{a} in three pairs	[1]
		less 2e for the double bond gives a total of be, in three pairs.	

The bond angle is less than 120° because of the lone pair on the central nitrogen. [1]