Chapter 6: Enthalpy changes

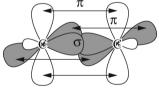
Homework marking scheme

1	a	i	relative formula mass of $MgCO_3 = 84.3$	[1]
			$m = n \times M_r = 0.05 \times 84.3 = 4.22$ g, to 3 significant figures.	[1]
		ii	number of moles of acid = $2 \times 0.05 = 0.1$ mol	[1]
			volume, $V = \frac{n}{C} = \frac{0.1}{2} = 0.05 \text{ dm}^3 \text{ or } 50 \text{ cm}^3$	[1]
		iii	$0.05 \text{ mol} = 0.05 \times 40.3 = 2.02 \text{ g}$ (to 3 significant figures) or 2.015 g	[1]
		iv	Place excess (or any volume greater than 50 cm ³) of 2 mol dm ⁻³ HCl in polystyrene	
			beaker (or insulated calorimeter).	[1]
			Measure the initial temperature of the acid.	[1]
			Add the MgCO ₃ and stir until all the solid has dissolved/reaction stopped.	[1]
			Measure the final temperature of the reaction mixture.	[1]
			Use the equation:	
			heat change = mass of water × specific heat capacity of water × change in temperature	[1]
	b			
		2Н	$Cl + MgCO_3 \xrightarrow{\Delta H_{reaction}} MgO + CO_2 + 2HCl$	
			ΔH_1 ΔH_2	
			$MgCl_2 + CO_2 + H_2O$	
		thr	ee correct corners of the cycle	[1]
			ee arrows in correct directions	[1]
			rect labelling of the arrows.	[1]
	c	i		
			MgCO ₃ (s) \longrightarrow MgO(s) + CO ₂ (g)	
			AHIMECO, AHIME X AHIME	
			$M\alpha(s) + 3/2\Omega_{1}(\alpha) + C(s)$	

 $Mg(s) + 3/2O_2(g) + C(s)$

three correct corners of the cycle

[1]


- three arrows in correct directions[1]correct labelling of the arrows.[1]
- correct labelling of the arrows. **ii** $\Delta H_{\text{reraction}} + \Delta H_f(\text{MgCO}_3) = \Delta H_f(\text{MgO}) + \Delta H_f(\text{CO}_2)$ or
- $\Delta H_{\text{reraction}} = [\Delta H_{\text{f}}(\text{MgO}) + \Delta H_{\text{f}}(\text{CO}_2)] \Delta H_{\text{f}}(\text{MgCO}_3)$ $\Delta H_{\text{reraction}} = -601.7 + (-393.5) (-1095.8)$
 - = $+101 \text{ kJ mol}^{-1}$ (lose 1 mark if give $+100.6 \text{ kJ mol}^{-1}$ because question states to 3 s.f.) [1]

[1]

[1]

d i $\left[Mg \right]^{2+} \left[{\mathop{\times}\limits_{\stackrel{\bullet \times}{\overset{\bullet}}} {\mathop{\otimes}\limits_{\times \times}} {\mathop{\times}\limits_{\times}} \right]^{2-}$ correct charges on the two ions [1] zero electrons on the Mg^{2+} (or eight electrons, all dots) and eight electrons on the oxygen [1] two different electrons on the oxygen in different pairs, as in diagram. [1] The magnesium loses its two outer electrons and this removes one energy level, ii therefore, smaller radius of atom. [1] Attractive positive charge on nucleus distributed over fewer electrons. [1] The oxygen gains two electrons and the attractive positive charge on the nucleus is distributed over more electrons. [1] Therefore, less attractive force per electron and radius increases. [1] $C_6H_6 \rightarrow 3C_2H_2$ a [1] Use either a Hess's cycle or the expression b i $\Delta H_{\text{reaction}} = \text{sum of bond energies (products)} - \text{sum of bond energies (reactants)}$ [1] $\Delta H_{\text{reaction}} = (6 \times \text{C}-\text{C}/\text{C}=\text{C} \text{ (benzene)} + 6 \times \text{C}-\text{H}) - (3 \times \text{C}=\text{C} + 6 \times \text{C}-\text{H})$ The $6 \times C$ -H cancel, leaving $\Delta H_{\text{reaction}} = 6 \times 520 - 3 \times 840$ [1] $= +600 \text{ kJ mol}^{-1}$ [1] ii $C_2H_2 + 5/2O_2 \rightarrow 2CO_2 + H_2O$ [1] iii bonds broken: $1 \times C \equiv C = +840$ $2 \times C - H = 2 \times 410$ $5/2 \text{ O}=\text{O}=2.5 \times 497$ [1] $total = +2902.5 \text{ kJ mol}^{-1}$ bonds made: $4 \times C=O = 4 \times 740 = +2960$ and $2 \times O-H = 2 \times 460$ [1] $total = +3880 \text{ kJ mol}^{-1}$ $\Delta H_{\text{reaction}} = +2902.5 - 3880$ [1] $\Delta H_{\rm reaction} = -978 \text{ kJ mol}^{-1}$ [1] с

2

sigma bond between the carbon atoms [1] pi bond above and below the plane of the molecule [1] pi bond in the plane of the molecule. [1] d There are four pairs of electrons round each carbon (three pairs shared between the carbon atoms, and one pair per carbon shared with a hydrogen atom). [1] But two of these are multiple bonds and do not contribute to the shape. [1]

This leaves one pair of electrons shared between the carbon atoms and therefore the shape is linear. [1]

e

Η drawing the atoms with some resemblance to the correct structure [1] correct bond angles. [1]