Chapter 5: States of matter

Homework marking scheme

1	_		$2M_{\tau}(z) + O_{\tau}(z) = 2M_{\tau}O(z)$	
1	a	i	$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ balanced equation	[1]
			correct state symbols	[1]
		ii	number of moles of magnesium oxide = number of moles of magnesium = $\frac{0.072}{24.3}$	[1]
			$= 2.96 \times 10^{-3} \text{ mol}$	
			mass of magnesium oxide that should be formed = $2.96 \times 10^{-3} \times 40.3 = 1.193$ g	[1]
		iii	percentage yield of magnesium oxide = $\frac{1.027}{1.193} \times 100\% = 86.1\%$	[1]
	b	i	The ions in sodium chloride are Na^+ and Cl^-	[1]
			The electrostatic attractive forces between magnesium ions and oxide ions are greater	F11
			because of the greater charges on each of the ions. Therefore, magnesium oxide has a higher melting point because a greater amount of	[1]
			energy is required to separate the ions and form a liquid.	[1]
		ii	In the solid state the charge-carrying ions are not free to move and therefore a current	
			cannot flow.	[1]
			However, in the liquid state the charge carrying ions are free to move and therefore a current will flow.	[1]
	c	i	current will now.	[1]
			$2p$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	
			2s	
			1s	
			Correct labelling of the energy levels (see diagram).	[1]
		ii	Three electrons (from the magnesium) labelled as arrows in the three 2p orbitals or	[+]
			pointing in the same direction.	[1]
		iii	The other five electrons from the nitrogen that should be easily distinguishable from the	
			three electrons from the magnesium.	[1]
2	a	Us	e the equation $n = \frac{PV}{RT}$	[1]
			e the correct quantities in the equation:	
			3 K for the temperature	[1]
		61	$4 \times 10^{-6} \text{ m}^3$ for the volume	[1]
		<i>n</i> =	$= \frac{1.01 \times 10^5 \times 61.4 \times 10^{-6}}{8.314 \times 373} = 0.002 \text{ mol}$	[1]
		$M_{\rm r}$	$=\frac{m}{n}=\frac{0.172}{0.002}=86 \text{ g mol}^{-1}$	[1]
	b		e volume of carbon dioxide is $6 \times$ that of the hydrocarbon, X. Therefore, there must be si	
			bons in the molecule. uss of carbons = $6 \times 12 = 72$; remainder = $86 - 72 = 14$ and so the formula is C ₆ H ₁₄	[1]
	c		line is a non-polar molecule;	[1] [1]
	-		n-polar substances dissolve well in non-polar solvents like hexane (C_6H_{14}).	[1]

3

		So	dium chloride consists of charged ions,	[1]
		wh	ich dissolve well in polar solvents but not non-polar solvents like hexane (C_6H_{14}).	[1]
	d	i	The particles are coming closer together or the space between the particles is being	
			reduced.	[1]
		ii	The gas is condensing to a liquid,	[1]
			the particles are becoming close enough together	[1]
			so that the intermolecular forces are strong enough to hold the particles in liquid form.	[1]
		iii	The particles are very close together	[1]
			but 'roll over' each other.	[1]
		iv	All the particles are in liquid form and very close together	[1]
			because the particles are very close together they cannot be compressed easily.	[1]
		V	There are attractive forces between the particles in real gases, but in ideal gases there	
			should be no attractive forces between the particles.	[1]
			The particles have a finite volume in real gases, but in ideal gases the volume of the	
			particles should be negligible.	[1]
5	a	i	E	[1]
		ii	Α	[1]
		iii	С	[1]
		iv	D	[1]
		v	В	[1]
	b	Th	ere are no free electrons	[1]
		the	outer-shell electrons are all 'used up' in covalent bonding.	[1]
	c	i	E is a giant ionic substance, the electrostatic attractive forces between the ions are very	
			strong	[1]
			and therefore a lot of energy is required to separate the particles and melt the substance	.[1]
		ii	In the solid state, the current-carrying ions are not free to move and therefore no curren	t
			will flow	[1]
			in the liquid state the ions are free to move and carry the current.	[1]
	d	i		

	at least two rows of ions	[1]
	electrons in between ions.	[1]
	The delocalised electrons	[1]
	are able to move and carry the current in both states of matter.	[1]
ii	If one layer of ions moves across another	[1]
	the structure is identical and therefore not disrupted.	[1]
iii	The new atoms are of a different size	[1]
	they stop the layers sliding over each other so readily.	[1]
iv	In 10 g of alloy, there are 9 g of Cu and 1 g of tin	[1]
	$10 \text{ g Cu} = \frac{10}{63.5} \text{ mol} = 0.157 \text{ mol}$	[1]
	$1 \text{ g tin} = \frac{1}{119} \text{ mol} = 0.00840 \text{ mol}$	[1]
	molar ratio $Cu : Sn = 0.157 : 0.00840 = 19 : 1$ (has to be whole number ratio)	[1]

4

Water molecules will align themselves and be deviated by the electrostatic field; hexane will not. [1] ii In water the H–O–H angle is 104.5°. [1] In hexane the H–C–H angle is 109.5°. [1] iii $H - O^{\delta +}_{-}_{-}_{-}_{H}$ $H - O^{\delta +}_{-}_{-}_{-}_{-}_{H}$ correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol volume of carbon dioxide = n × 24 dm ³ = 0.050 × 24 dm ³ = 1.2 dm ³ [1]	a	i	Water is polar, hexane is non-polar.	[1]
 ii In water the H–O–H angle is 104.5°. [1] ii hexane the H–C–H angle is 109.5°. [1] iii H — O^{δ+} H — O^{δ+} Grrect dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] ii Cyclohexane of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 			Water molecules will align themselves and be deviated by the electrostatic field; hexar	ne
 ii In water the H–O–H angle is 104.5°. [1] In hexane the H–C–H angle is 109.5°. [1] iii H — O^{δ+} H H — O^{δ+} H H — O^{δ+} H correct dipoles [1] Ione pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] ii C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 			will not.	[1]
In hexane the H–C–H angle is 109.5°. [1] iii $H \longrightarrow O^{\delta_+}$ H $H \longrightarrow O^{\delta}$ H H H H H H H H		ii	In water the H–O–H angle is 104.5°.	
iii $H - O_{\frac{1}{2}}^{\delta^{+}}$ $H - O_{\frac{1}{2}}^{\delta^{-}}$ H $Correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C_{2}H_{5}OH + 3O_{2} \rightarrow 2CO_{2} + 3H_{2}O [1]ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]$			In because the $H_{-}C_{-}H$ angle is 109.5°	
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]		iii	C	
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]			$H - O^{\delta +}$	
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]				
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]			Ĥ	
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]				
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]			$H \longrightarrow O_{\chi}^{\circ}$	
correct dipoles [1] lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]				
lone pairs on oxygen [1] hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]			n correct dipolog	[1]
 hydrogen bond, shown as dashed line, between lone-pair on oxygen on one molecule and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 			-	
and an electron-deficient hydrogen on the other. [1] iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]				[1]
 iv Hexane is non-polar and so no intermolecular interactions are formed between the water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 				F17
water and the hexane, [1] it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]				[1]
 it is not energetically favourable for the liquids to mix. [1] b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 		IV		F 4 3
 b i Ethanol has a dipole in the molecule/is polar. Therefore, a stream of ethanol will be deviated. [1] ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 				
deviated.[1]iiCyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated.[1]ci $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ [1]iinumber of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol[1]	_			[1]
 ii Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of cyclohexane will not be deviated. [1] c i C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1] 	b	i		
c vclohexane will not be deviated.[1]c i $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ [1]ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol[1]				[1]
c i $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ [1] ii number of moles of carbon dioxide = 2 × no. of moles of ethanol = 0.050 mol [1]		ii	Cyclohexane is non-polar/has no dipole in the molecule. Therefore, a stream of	
ii number of moles of carbon dioxide = $2 \times no.$ of moles of ethanol = 0.050 mol [1]			cyclohexane will not be deviated.	[1]
	c	i	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$	[1]
volume of carbon dioxide = $n \times 24 \text{ dm}^3 = 0.050 \times 24 \text{ dm}^3 = 1.2 \text{ dm}^3$ [1]		ii	number of moles of carbon dioxide = $2 \times no.$ of moles of ethanol = 0.050 mol	[1]
			volume of carbon dioxide = $n \times 24 \text{ dm}^3 = 0.050 \times 24 \text{ dm}^3 = 1.2 \text{ dm}^3$	[1]