Chapter 2: Atomic structure (shared Homework sheet with Chapter 3)

Homework marking scheme

a	Element I is magnesium (Mg)	[1]
	large jump from the 2nd ionisation energy to the 3rd ionisation energy.	[1]
	Element II is sulfur (S)	[1]
	large jump from the 6th ionisation energy to 7th ionisation energy.	[1]
	Element III is aluminium (Al)	[1]
	large jump from the 3rd ionisation energy to the 4th ionisation energy.	[1]
	Element IV is chlorine (Cl)	[1]
	large jump from the 7th ionisation energy to the 8th ionisation energy.	[1]
	Element V is sodium (Na)	[1]
	large jump from the 1st ionisation energy to the 2nd ionisation energy.	[1]
b	Element I (Mg): $1s^2 2s^2 2p^6 3s^2$	[1]
	Element II (S): $1s^2 2s^2 2p^6 3s^2 3p^4$	[1]
c	i spherical shape because it is taken from an s orbital	
	an s orbital	
		[1]
	ii dumb-bell shape because it is taken from a p orbital.	
d	i $S(g) \rightarrow S'(g) + e^{-1}$	
	1 mark for correct use of state symbols and 1 mark for correct equation.	[2]
	ii $Al^{\prime\prime}(g) \rightarrow Al^{\circ\prime}(g) + e^{-1}$	
	1 mark for correct use of state symbols and 1 mark for correct equation.	[2]
e	³³ S has 16 electrons, 16 protons and 17 neutrons	[1]
f	$A_r = \frac{(32 \times 95) + (33 \times 0.76) + (34 \times 4.22) + (36 \times 0.01)}{(36 \times 0.01)}$	
	. 100	

= 32.1 1 mark **i**

ii

1 mark for 32, 1 mark for 1 decimal place, 1 mark for showing working.

[3]

g

1

Element	Sulfur	Fluorine			
number of moles	$\frac{29.7}{32.1} = 0.925$	$\frac{70.3}{19} = 3.7$			
relative number of atoms	$\frac{0.925}{0.925} = 1$	$\frac{3.7}{0.925} = 4$			
empirical formula is SF ₄					
$\frac{\text{molecular formula}}{\text{empirical formula}} = \frac{\text{relative molecular mass}}{\text{mass of empirical formula}}$					
$=\frac{108.1}{108.1}=1$					
Therefore, molecular formula = empirical formula = SF_4					

2 a i relative abundance 79 81 m/e value 1 mark for horizontal axis and label, 1 mark for vertical axis and label, 1 mark for two lines, 1 mark the for the ⁸¹Br value being slightly (but obviously) shorter than the ⁷⁹Br value [4] ii The more abundant isotope is the bromine-79 isotope [1] because the relative atomic mass is calculated using the weighted average [1] Br^{-} is $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{10} 4s^{2} 4p^{6}$ b i [2] F is $1s^2 2s^2 2p^5$ ii [1] iii Their outer electron arrangement is np⁵ [1] iv a p orbital [1] v ionisation energy 2 3 4 5 6 7 8 9 1 number of electrons removed both axes labelled correctly [1] steady rise from 1 to 7 electrons removed [1] jump in values between 7 and 8 electrons removed [1] i $Br_2 + 5F_2 \rightarrow 2BrF_5$ с 1 mark for correct symbols and formulae, 1 mark for balancing [2] ii $n(\text{fluorine}) = \frac{5}{2}n(\text{BrF}_5) = \frac{5}{2} \times 0.0500 = 0.125 \text{ mol}$ [1] volume of $F_2 = n$ (fluorine) × 24 dm³ = 0.125 × 24 dm³ [1] $= 3 \text{ dm}^3$ [1] d 2KBr + 6F₂ \rightarrow 2BrF₅ + 2KF i 1 mark for correct symbols and formulae, 1 mark for balancing [2] ii $n(\text{fluorine}) = 3n(\text{BrF}_5) = 3 \times 0.0500 = 0.150 \text{ mol}$ [1] volume of $F_2 = n$ (fluorine) × 24 dm³ = 0.150 × 24 dm³ [1] $= 3.6 \text{ dm}^3$ [1] 3

a	i	II and X	[1]
		II has the highest value of first ionisation energy.	[1]
		X is eight elements further on/also at peak in ionisation energy.	[1]
	ii	neon	[1]
		$1s^2 2s^2 2p^6$	[1]
		argon	[1]
		$1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$	[1]
b	i	The electron added goes into the same sub-shell/orbital, but there is an increased	[-]
~		number of protons in the nucleus	[1]
		therefore, there is an increased attractive force and more energy is required	
		to remove the electron.	[1]
	ii	The electron added goes into a p orbital	[1]
		Electrons into p orbitals are less tightly held and therefore easier to remove.	[1]
	iii	Extra protons are being added to the nuclei	[1]
		but electrons are being added in the same energy level and therefore have an extra	[-]
		attractive force so more energy is required to remove the electrons	[1]
c	i	Phosphorus	[1]
C	ii	Thosphorus	[1]
		3s	

	1 mark for 3s and 3p levels, 1 mark for two electrons in 3s and three electrons in 3p,	
	1 mark for the three electrons in the 3p energy level all having the same 'spin'.	[3]
iii	The electron being added is going into an already occupied orbital	[1]
	therefore, feels repulsion from the electron present	[1]
	therefore, requires less energy to remove it.	[1]