Chapter 2: Atomic structure (shared Homework sheet with Chapter 3)

Homework marking scheme

1 a Element I is magnesium (Mg)
large jump from the 2nd ionisation energy to the 3rd ionisation energy.
Element II is sulfur (S)
large jump from the 6th ionisation energy to 7th ionisation energy.
Element III is aluminium (Al)
large jump from the 3rd ionisation energy to the 4th ionisation energy.
Element IV is chlorine (Cl)
large jump from the 7th ionisation energy to the 8th ionisation energy.
Element V is sodium (Na)
large jump from the 1st ionisation energy to the 2 nd ionisation energy.
b Element I (Mg): $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$
Element II (S): $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
c i spherical shape because it is taken from an s orbital an s orbital

ii dumb-bell shape because it is taken from a p orbital.

d i $\quad \mathrm{S}(\mathrm{g}) \rightarrow \mathrm{S}^{+}(\mathrm{g})+\mathrm{e}^{-}$
1 mark for correct use of state symbols and 1 mark for correct equation.
ii $\quad \mathrm{Al}^{7+}(\mathrm{g}) \rightarrow \mathrm{Al}^{8+}(\mathrm{g})+\mathrm{e}^{-}$
1 mark for correct use of state symbols and 1 mark for correct equation.
e ${ }^{33} \mathrm{~S}$ has 16 electrons, 16 protons and 17 neutrons
f $A_{\mathrm{r}}=\frac{(32 \times 95)+(33 \times 0.76)+(34 \times 4.22)+(36 \times 0.01)}{100}$
$=32.1$
1 mark for 32, 1 mark for 1 decimal place, 1 mark for showing working.
g i

Element	Sulfur	Fluorine
number of moles	$\frac{29.7}{32.1}=0.925$	$\frac{70.3}{19}=3.7$
relative number of atoms	$\frac{0.925}{0.925}=1$	$\frac{3.7}{0.925}=4$

empirical formula is SF_{4}
ii $\frac{\text { molecular formula }}{\text { empirical formula }}=\frac{\text { relative molecular mass }}{\text { mass of empirical formula }}$
$=\frac{108.1}{108.1}=1$
Therefore, molecular formula $=$ empirical formula $=\mathrm{SF}_{4}$

2 a i
relative
abundance

1 mark for horizontal axis and label, 1 mark for vertical axis and label, 1 mark for two lines, 1 mark the for the ${ }^{81} \mathrm{Br}$ value being slightly (but obviously) shorter than the ${ }^{79} \mathrm{Br}$ value
ii The more abundant isotope is the bromine-79 isotope
because the relative atomic mass is calculated using the weighted average
b i $\quad \mathrm{Br}^{-}$is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
ii $\quad \mathrm{F}$ is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$
iii Their outer electron arrangement is $n p^{5}$
iv

v

both axes labelled correctly
steady rise from 1 to 7 electrons removed
jump in values between 7 and 8 electrons removed
c i $\mathrm{Br}_{2}+5 \mathrm{~F}_{2} \rightarrow 2 \mathrm{BrF}_{5}$
1 mark for correct symbols and formulae, 1 mark for balancing
ii $n($ fluorine $)=\frac{5}{2} n\left(\mathrm{BrF}_{5}\right)=\frac{5}{2} \times 0.0500=0.125 \mathrm{~mol}$
volume of $\mathrm{F}_{2}=n($ fluorine $) \times 24 \mathrm{dm}^{3}=0.125 \times 24 \mathrm{dm}^{3}$
$=3 \mathrm{dm}^{3}$
d i $2 \mathrm{KBr}+6 \mathrm{~F}_{2} \rightarrow 2 \mathrm{BrF}_{5}+2 \mathrm{KF}$
1 mark for correct symbols and formulae, 1 mark for balancing
ii $n($ fluorine $)=3 n\left(\mathrm{BrF}_{5}\right)=3 \times 0.0500=0.150 \mathrm{~mol}$
volume of $\mathrm{F}_{2}=n$ (fluorine) $\times 24 \mathrm{dm}^{3}=0.150 \times 24 \mathrm{dm}^{3}$
$=3.6 \mathrm{dm}^{3}$

3 a i II and X
II has the highest value of first ionisation energy.
X is eight elements further on/also at peak in ionisation energy.
ii neon
$1 s^{2} 2 s^{2} 2 p^{6}$

> argon
$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
b i The electron added goes into the same sub-shell/orbital, but there is an increased number of protons in the nucleus
therefore, there is an increased attractive force and more energy is required to remove the electron.
ii The electron added goes into a p orbital
Electrons into p orbitals are less tightly held and therefore easier to remove.
iii Extra protons are being added to the nuclei
but electrons are being added in the same energy level and therefore have an extra attractive force, so more energy is required to remove the electrons.
c i Phosphorus
ii

$3 s 4 \downarrow$
1 mark for 3 s and 3 p levels, 1 mark for two electrons in 3 s and three electrons in 3p, 1 mark for the three electrons in the 3 p energy level all having the same 'spin'.
iii The electron being added is going into an already occupied orbital [1] therefore, feels repulsion from the electron present therefore, requires less energy to remove it.

