Chapter 1: Moles and equations

Homework marking scheme

In these questions the main formulae used are $n = \frac{V}{24000}$ for gases and $n = \frac{m}{A_r}$ for solids.				
1	a	i $n(H_2) = \frac{300}{24000} = 1.25 \times 10^{-2} \text{ mol}$	[1]	
		ii $n(Ca) = n(H_2) = 1.25 \times 10^{-2} \text{ mol}$	[1]	
		iii 1 mark for formula $A_r = \frac{m}{n}$	[1]	
		n	[-]	
		The second mark is for using the values and calculating the A_r ; 0.52	543	
		$A_{\rm r} = \frac{0.52}{1.25 \times 10^{-2}} = 41.6$	[1]	
	b	i $n(\text{HCl}) = 25.8 \times 10^{-3} \times 1 \text{ (using } n = c \times V)$	[1]	
		ii From equation, $n(Ca(OH)_2) = n(Ca) = \frac{1}{2}n(HCl) = 1.29 \times 10^{-2}$	[2]	
		1 mark for the relationship and 1 mark for the calculation m	[2]	
		iii 1 mark is for $A_r = \frac{m}{n}$		
		The second mark is for using the values and calculating the A_r ;		
		$A_{\rm r} = \frac{0.52}{1.29 \times 10^{-2}} = 40.3$	[2]	
	c	$A_{\rm r} = \frac{(40 \times 96.97) + (42 \times 0.64) + (43 \times 0.15) + (44 \times 2.06) + (46 \times 0.003) + (48 \times 0.19)}{100}$		
	C			
		= 40.12 1 mark for formula, 1 mark for 40.1 and 1 mark for the second decimal place	[2]	
	d	i The titration is more accurate because it gave a result closer to the actual.	[3] [1]	
		ii Impurities on the sample of the calcium metal, such as calcium oxide.	[1]	
2	a	The relative atomic mass is the weighted average mass of the (naturally occurring) atom	ring) atoms of	
		an element	[1]	
		compared with 1/12th the mass of an atom of carbon-12	[1]	
	b	The isotope with a relative isotopic mass of 7	[1] [1]	
		because the relative atomic mass is nearer 7 than 6		
		and it is the weighted average that is used	[1]	
	c	i $2\text{Li}(s) + 2\text{H}_2O(1) \rightarrow 2\text{Li}OH(aq) + \text{H}_2(g)$	[2]	
		1 mark for the correct symbols and formulae, 1 mark for the balancing $V_{\rm max} = 245$	[2]	
		ii $n(H_2) = \frac{V_{gas}}{24000} = \frac{245}{24000} = 1.02 \times 10^{-2} \text{ mol}$	[1]	
		$n(\text{Li}) = 2 \times n(\text{H}_2) = 2 \times 1.02 \times 10^{-2} = 2.04 \times 10^{-2} \text{ mol}$	[1]	
		$A_{\rm r} = \frac{m}{n} = \frac{0.15}{2.04 \times 10^{-2}}$	[1]	
		$= 7.35 \text{ (g mol}^{-1}\text{)}$	[1]	
		([1]	

Cambridge International AS and A Level Chemistry

3

d	i	Readings are 22.00; 21.55; 22.80; 21.55, use 21.55 cm ³	
		1 mark for all correct and 1 mark for giving all to 2 decimal places	[2]
	ii	n(Li) = n(LiOH) = n(HCl)	[1]
		$n(\text{Li}) = 21.55 \times 10^{-3} \times 0.100 = 2.16 \times 10^{-3} \text{ mol}$	[1]
		This is one-tenth of the total amount of lithium hydroxide and therefore lithium (25 cm	3
		out of total of 250 cm ³)	[1]
		Therefore, total amount of lithium = 2.16×10^{-2} mol	[1]
		$A_{\rm r}({\rm Li}) = \frac{m}{n} = \frac{0.15}{2.16 \times 10^{-2}} = 6.94 ({\rm g \ mol}^{-1})$	[1]
	iii	volumetric flask	[1]
		pipette	[1]
a	2N	$aHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(l)$	[1]
b	i	$n(\text{NaHCO}_3) = \frac{m}{M} = \frac{0.42}{84}$	[1]
2	-	I • · ·	[-]
		$= 5 \times 10^{-3} \text{ mol}$	[1]
	ii	$n(\text{CO}_2) = \frac{48}{24000} = 2 \times 10^{-3} \text{ mol}$	[1]
	iii	The actual number of moles of sodium hydrogencarbonate can be found from the	
		equation:	
		$n(\text{NaHCO}_3) = 2 \times n(\text{CO}_2) = 4 \times 10^{-3} \text{ mol}$	
		1 mark for using the equation and 1 mark for the calculation	[2]
	iv	Percentage purity = actual number of moles of NaHCO ₃ /number of moles weighed out	
		$=\frac{0.004}{0.005} \times 100\% = 80\%$	
		0.005	[0]
_	0	1 mark for the relationship and 1 mark for the calculation $D_{1} = 0$	[2]
c		$Na_2CO_3) = \frac{1}{2} \times n(NaHCO_3)$ $\frac{1}{2} \times 4 \times 10^{-3} = 2 \times 10^{-3} mol$	[1]
d		$HCl) = 2 \times n(Na_2CO_3) = 4 \times 10^{-3} mol$	[1]
u			[1]
	V($(\text{HCl})_{\text{I}} = \frac{n}{C} = \frac{4 \times 10^{-3}}{0.2} = 20 \times 10^{-3} \text{ dm}^3 (= 20 \text{ cm}^3)$	[1]
		C 0.2	