Answers to worksheet questions

Chapter 12

Worksheet 12.1

1

Add sodium hydroxide solution to a solution of the salt	Add concentrated ammonia solution to a solution of the salt	Carry out a flame test	Metal ion present in salt
nothing observed		lilac	a K ⁺ present
white precipitate produced, insoluble in excess alkali		brick red	b Ca ²⁺ present
c brown precipitate produced, insoluble in excess alkali		d nothing observed	Fe ³⁺ present
white precipitate produced which dissolved in excess alkali	white precipitate produced which dissolved in excess alkali	nothing observed	e Zn ²⁺ present
light green precipitate produced which slowly turns reddish-brown		nothing observed	f Fe ²⁺ present
g nothing observed		h yellow	Na ⁺ present

2

Add dilute acid	Add sodium hydroxide solution and warm	Add sodium hydroxide solution and warm – then add aluminium	Flame test	Substance
nothing observed	nothing observed	gas evolved, turns damp red litmus blue after aluminium added	yellow	a sodium nitrate
fizzing, gas turns limewater milky	gas evolved turns damp red litmus blue	nothing observed	nothing observed	b ammonium carbonate
c fizzing, gas turns limewater milky	d nothing observed	e nothing observed	f brick red	calcium carbonate

Worksheet 12.2

Factors that need to be kept constant: volume of water / temperature of water / processing of sample.

Use three beakers containing 100 cm³ of water kept in a thermostatically controlled water bath at 30 °C. Test each fertiliser in turn.

Add fertiliser while stirring until solution is just saturated.

Filter off the undissolved solid using a Buchner filter and suction.

Take the solution and evaporate to dryness in a pre-weighed beaker.

Weigh again to find the mass of the dissolved fertiliser.

Repeat the procedure for other fertilisers and compare the masses dissolved.

Worksheet 12.3

- 1 mass of the acid used in the experiment = 1.51 g
- **2** a pipette
- **3** a pink **b** colourless

4	Titration number	1	2	3
	Final reading/cm ³	25.2	31.1	48.3
	Initial reading / cm³	0.0	6.8	23.8
	Volume of hydrochloric acid used/cm ³	25.2	24.3	24.5
	Best titration results (🗸)		1	1

The calculated average volume of hydrochloric acid required = 24.4 cm^3

- **5** number of moles of hydrochloric acid = $(0.1/1000) \times 24.4 = 2.44 \times 10^{-3}$ moles
- 6 number of moles of sodium hydroxide present in 25.0 cm^3 of solution B = 2.44×10^{-3} moles
- 7 number of moles of sodium hydroxide in 250 cm^3 of solution $\mathbf{B} = 2.44 \times 10^{-3} \times 10$ = 0.0244 moles
- 8 number of moles of sodium hydroxide in the original 50.0 cm^3 of 1.00 mol/dm^3 sodium hydroxide = $(1.00/1000) \times 50 = 0.05$ moles
- 9 number of moles of sodium hydroxide that reacted with the original sample of the organic acid, A = 0.05 - 0.0244 = 0.0256 moles
- **10** number of moles of A in the sample = 0.0256/2 = 0.0128 moles
- **11** relative molecular mass of the acid A = 1.51/0.0128 = 118
- **12** x = 2 and y = 4formula is HOOCCH₂CH₂COOH

Worksheet 12.4

- 1 test: add to a solution of potassium manganate(VII) result: purple solution goes colourless
- 2 Test the solution with Universal Indicator paper paper turns orange or use a pH meter.
- **3** Sulfur dioxide kills bacteria.
- 4 A reducing agent will remove oxygen from another compound.
- **5** by filtration and collection of the residue
- 6 a grey-green precipitate of chromium(III) hydroxide; Cr(OH)₃
- 7 Chromium(III) hydroxide re-dissolves in excess sodium hydroxide.

Worksheet 12.5

- **1 a** a colourless solution
 - **b** a solid formed when two solutions are mixed / or a gas is passed into a solution
 - **c** silver chloride
- **2** a sodium chloride + silver nitrate \rightarrow silver chloride + sodium nitrate
 - **b** (aq)
 - **c** (s)
 - **d** $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
- 3

a	Solution	Observation	Observation after leaving in sunlight	Halide present? / Name of any precipitate
	Α	no reaction	no change	🗙 no reaction
	В	pale yellow precipitate	went dark	✓ silver bromide
	С	yellow precipitate	went dark	✓ silver iodide

b a photochemical reaction

c photography – both in forming the image on a film and printing the image on photographic paper