
Answers to worksheet questions

Chapter 11

Worksheet 11.1

- a because their boiling points are low (below ambient temperature) so they do not condense in the tower
 - **b** because the boiling points of the fractions are different and they condense at different heights in the column
 - c naphtha
 - **d** The boiling point of bitumen is too high it does not vaporise.

Fraction	Use
petrol (gasoline)	fuel for cars
naphtha	source of chemicals
kerosene (paraffin)	aircraft fuel, heating oil
lubricating oil	lubricating engines / moving parts
bitumen	road surfacing

- ${f g}$ This method uses normal lab glassware and apparatus, and so it is inexpensive.
- **h** The process is continuous and collects all the fractions at the same time.
- i The experiment does not reach the boiling point of the lubricating oil fraction.
- j petrol (gasoline)

The hydrocarbons in petroleum are called *alkanes*. Their carbon atoms are joined by *single* bonds. They cannot form any extra bonds so they are said to be *saturated*. When long-chain hydrocarbons from petroleum are cracked, *alkenes* such as ethene are formed. Ethene has a carbon–carbon *double* bond. This can open up to add more atoms, so ethene is said to be *unsaturated*.

Worksheet 11.2

- **1 a** Addition polymerisation is a type of polymerisation in which unsaturated molecules (monomers) containing a C=C double bond join together to make long-chain molecules.
 - **b** There is no small molecule released when the monomers join together in addition to polymerisation.

$$n \left(\begin{array}{c} H & H \\ C = C \\ H & H \end{array} \right) \xrightarrow{\text{high pressure}} \left(\begin{array}{c} H & H \\ | & | \\ C - C \\ | & | \\ H & H \end{array} \right)$$

2 a n = a large number

h

	Name of monomer	Name of polymer	Use of polymer
A	propene	poly(propene)	crates and boxes, plastic rope
В	chloroethene	poly(chloroethene)/PVC	pipes, guttering
С	tetrafluoroethene	poly(tetrafluoroethene)/PTFE	non-stick pans, non-stick joints

Worksheet 11.3

1 a In addition polymerisation, monomers join together without any small molecule being released / double bond opens and monomers join together.

In condensation polymerisation, a small molecule (usually water) is released when each monomer is added to the chain.

- **c** This is a protein chain because there are more than two different monomers involved / protein chains are built from 20 different amino acids.
- d i Terylene

- 2 a amino acids
 - **b** by heating overnight with concentrated hydrochloric acid
 - c (acid) hydrolysis
 - d chromatography

2

Worksheet 11.4

1

Name and structure of monomer	Name and structure of polymer
Ethene	Poly(ethene)
C=C H H	H H
Chloroethene	Poly(chloroethene)
C! H C=C H H H	(H H
Phenylethene	Poly(phenylethene)
C = C H H	$ \begin{pmatrix} H & C_6H_5 \\ $

- **2** A monomer is the simple molecule that then is joined together into a long-chain polymer / the individual unit from which a polymer is built.
- **3** They have a carbon–carbon double bond (C=C).
- 4 It does not corrode / it is lighter.
- **5 a** It is flexible and an electrical insulator.
 - **b** It does not perish / poly(chloroethene) is fire resistant / it can be made in a variety of colours.
- **6** tetrafluoroethene

poly(tetrafluoroethene), PTFE

7 These addition polymers are non-biodegradable and therefore do not rot. They give off toxic fumes when incinerated (burnt).

Worksheet 11.5

- 1 Nylon is similar in structure to proteins; a polyester is not a direct mimic of a biological molecule.
- **3** A protein chain is made from many different amino acid monomers.

- **5** a nylon: condensation polymerisation
 - **b** poly(propene): addition polymerisation
- 6 a nylon: water
 - **b** poly(propene): no other product

Worksheet 11.6

- 1 High temperatures remove colour from fabrics and can damage the fibres of the fabric.
- **2** Food and grease have biological components and so can be degraded by enzymes.
- **3** The enzymes are denatured at higher temperatures.
- 4 These washing powders contain enzymes and these are biological catalysts / enzymes are proteins.
- 5 glucose \rightarrow ethanol + carbon dioxide $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$
- **6** The ethanol evaporates in the oven as the bread is baked.
- **7** Assess the presentation in class discussion.

Worksheet 11.7

Assess the presentation in class discussion.