Answers to worksheet questions

Chapter 8

Worksheet 8.1

- 1 The metals of Group I in the Periodic Table are called the *alkali* metals. They are a family of very *reactive* metals. They tarnish rapidly in air, but are *shiny* when freshly cut. They conduct heat and *electricity* well but are *soft*, have low densities and *low* melting and boiling points.
- 2 a lithium + oxygen \rightarrow lithium oxide 4Li(s) + O₂(g) \rightarrow 2Li₂O(s)

b	Metal	Reaction with water
	lithium	floats and fizzes steadily
	sodium	melts and skates around on surface
	potassium	melts, skates around on surface and gas catches fire

c potassium + water → potassium hydroxide + hydrogen 2K(s) + 2H₂O(l) → 2KOH(aq) + H₂(g)

Worksheet 8.2

- 1 a i tungsten ii sodium iii tungsten
 - **b** they all conduct electricity
 - **c** mercury
 - **d** because it has a very high melting point
 - e It would sink because it is denser than mercury.

2	Property	Alkali metals	Transition metals
	reactivity	very reactive	less reactive
	density	can float on water	sink in water
	melting and boiling point	low	high
	colour of salts	colourless	often coloured

3 Metals have many *properties* that make them useful. Most metals react with other substances such as *air* and *water*. Because of this, most metals are found combined with other elements as *ores*. The method used to extract the metal depends on how *reactive* it is. Moderately reactive metals can be extracted by *reducing* the oxide with *carbon*. The most reactive metals must be extracted by *electrolysis*. Some metal compounds react with acids – they are called *bases*. When an acid reacts with a base, a *salt* is formed.

Worksheet 8.3

- 1 Zinc will displace copper from a solution of copper sulfate, and magnesium will displace zinc from a solution of zinc sulfate.
 - a zinc + copper sulfate → zinc sulfate + copper magnesium + zinc sulfate → magnesium sulfate + zinc
 - **b** $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$ $Mg(s) + ZnSO_4(aq) \rightarrow MgSO_4(aq) + Zn(s)$
 - c $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ $Mg(s) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Zn(s)$
 - **d** They are redox reactions because there is exchange of electrons / some atoms are losing electrons while some ions are gaining them.
 - e copper < zinc < magnesium
- **2** When a more reactive metal is dipped in a solution containing a less reactive metal, a *displacement* reaction takes place.

An example of this type of reaction is when a piece of *zinc* is dipped in *copper* sulfate solution, where the *more* reactive metal displaces the less reactive from solution. Studying these reactions helps us to draw up a *reactivity* series of the metals.

- **3 a** All three metals became the negative electrode.
 - **b** A > C > B (> copper)
 - c i A and B: 2.0 V
 - **ii B** and **C**: 0.2 V
 - **d i** A is the negative terminal.
 - **ii** C is the negative terminal.

Worksheet 8.4

- **1 a** Copper is being deposited on the surface of the zinc electrode.
 - **b** The copper ions that make the solution blue are being discharged to form the copper on the zinc electrode so the solution goes colourless.
 - **c** The reaction is an exothermic reaction so the temperature rises.
- $2 \qquad Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-1}$
- **3** $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
- 4 Electrons move from the zinc atoms to the copper ions.
- 5 The zinc reacts with the acid and dissolves, and bubbles of hydrogen gas are given off.
- **6** There is no reaction between copper and the acid.
- 7 a The electrons flow from zinc to copper in the external circuit.
 - **b** The zinc electrode gets smaller / shrinks / loses mass.
 - **c** The zinc electrode becomes negatively charged.
 - **d** The zinc electrode could be changed for a more reactive metal, magnesium, for example / the copper electrode could be changed for a less reactive metal, silver, for example.
 - e i anode: the zinc electrode
 - cathode: the copper electrode
 - ii These charges on the electrodes are the opposite way round to those in an electrolytic cell.

Worksheet 8.5

1 nole ZnS = 65 + 32 = 97 g

2ZnS	+ 3O ₂	\rightarrow	2ZnO	$+ 2SO_2$
2 moles			2 moles	
194 g			162 g	
194 tonnes			162 tonnes	
ZnO	+ C	\rightarrow	Zn	+ CO
1 mole			1 mole	
81g			65 g	
162 tonnes			130 tonnes	

- 2 The zinc evaporates from the mixture in the furnace and is condensed in the upper part of the furnace.
- **3** SO₂ is reacted with oxygen to make sulfur trioxide. This is then dissolved in water to make sulfuric acid. $2SO_2 + O_2 \rightleftharpoons 2SO_3$ $SO_3 + H_2O \rightarrow H_2SO_4$
- 4 $2CuS + 3O_2 \rightarrow 2CuO + 2SO_2$
- $5 \quad 2CuO + C \rightarrow 2Cu + CO_2$
- **6** carbon dioxide and water
- 7 copper
- 8 anode: the impure copper cathode: pure copper

Worksheet 8.6

Most reactive magnesium	> aluminium > zinc > iron > copper					
magnesium	Aluminium		Iron	Magnesium	Zinc	
		Copper				
Aluminium sulfate		no reaction	no reaction	1	no reaction	
Copper sulfate	✓		1	1	1	
lron sulfate	✓	no reaction		1	1	
Magnesium sulfate	no reaction	no reaction	no reaction		no reaction	
Zinc sulfate	1	no reaction	no reaction	1		

$$\begin{split} & 3Mg + Al_2O_3 \rightarrow 3MgO + 2Al \\ & Mg\left(s\right) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Zn(s) \end{split}$$

Worksheet 8.7

- **1 a** A and D
 - b In B there is no oxygen it has been boiled out of the water.
 In C there is no water the drying agent (calcium chloride) removes any water.
- 2 Rusting would be fastest in D because salt water promotes rusting.
- **3** by sacrificial protection / blocks of a more reactive metal than iron (magnesium or zinc) are attached to the hull or legs / these blocks are corroded in preference to the iron
- **4 a** by making the cutlery out of stainless steel (containing chromium)
 - **b** by galvanising the car body and by painting