Worksheet 6.2

Calculating enthalpy changes of reaction using standard enthalpy changes of combustion

The table below gives the standard enthalpy change of combustion for some carbon compounds and for hydrogen.

Name of substance	Formula	Standard enthalpy change of combustion (ΔH_c^{θ}) / kJ mol ⁻¹
propane	C ₃ H ₈	-2220
cyclopropane	(CH ₂) ₃	-1966
hydrogen	H_2	-286
hexane	C ₆ H ₁₄	-4195
pentane	C_5H_{12}	-3509
2,2-dimethylpropane	CH ₃ C(CH ₃) ₂ CH ₃	-3517
ethene	C ₂ H ₄	-1411
ethane	C_2H_6	-1560
cyclohexane	C ₆ H ₁₂	-3920
hexene	C_6H_{12}	-4128

Use the data in the table above to calculate the enthalpy change of reaction for each of the following reactions.

$$\mathbf{a} \quad \text{CH}_{3}\text{CH}_{2}\text{CH}_{3} \longrightarrow \begin{array}{c} H_{2} \\ \\ H_{2}\text{C} \end{array} + H_{2}$$
 [2]

$$\mathbf{b} \quad \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} \longrightarrow \quad \text{CH}_{3} \longrightarrow \quad$$

$$\mathbf{c} \quad \text{CH}_3\text{CH}_2\text{CH}=\text{CHCH}_3 \longrightarrow \begin{array}{c} \text{H}_2\\ \text{C}\\ \text{H}_2\text{C} \\ \text{CH}_2 \end{array}$$

$$\mathbf{d} \quad \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} \longrightarrow \begin{array}{c} H_{2}\text{C} \\ CH_{2} \\ H_{2}\text{C} \end{array} + H_{2}$$

$$(2)$$

$$\mathbf{e} \quad \mathrm{CH_2=CH_2} + \mathrm{H_2} \longrightarrow \mathrm{C_2H_6}$$
 [2]