Work Done by a Gas

- When a gas expands, it does work on its surroundings by exerting pressure on the walls of the container it's in
- This is important, for example, in a steam engine where expanding steam pushes a piston to turn the engine
- The work done when a volume of gas changes at constant pressure is defined as:

$$
W=p \Delta V
$$

- Where:
- W = work done (J)
$\mathrm{p}=$ external pressure (Pa)
$\mathrm{V}=$ volume of gas $\left(\mathrm{m}^{3}\right)$
- For a gas inside a cylinder enclosed by a moveable piston, the force exerted by the gas pushes the piston outwards
- Therefore, the gas does work on the piston
- The volume of gas is at constant pressure. This means the force Fexerted by the gas on the piston is equal to :

$$
F=p \times A
$$

- Where:
- $p=$ pressure of the gas (Pa)
- $A=$ cross sectional area of the cylinder $\left(m^{2}\right)$
- The definition of work done is:

$$
W=F \times d
$$

- Where:
- $F=$ force (N)
- $d=$ perpendicular displacement to the force (m)
- The displacement of the gas d multiplied by the cross-sectional area A is the increase in volume $\Delta \mathrm{V}$ of the gas:

$$
W=p \times A \times d
$$

- This gives the equation for the work done when the volume of a gas changes at constant pressure:

$$
W=p \Delta V
$$

- Where:
- $\Delta V=$ increase in volume of the gas in the piston when expanding $\left(\mathrm{m}^{3}\right)$
- This is assuming that the surrounding pressure p does not change as the gas expands
- This will be true if the gas is expanding against the pressure of the atmosphere, which changes very slowly
- When the gas expands (V increases), work is done by the gas
- When the gas is compressed (V decreases), work is done on the gas

Worked example

When a balloon is inflated, its rubber walls push against the air around it.

Calculate the work done when the balloon is blown up from $0.015 \mathrm{~m}^{3}$ to $0.030 \mathrm{~m}^{3}$.

Atmospheric pressure $=1.0 \times 10^{5} \mathrm{~Pa}$.

Step 1: \quad Write down the equation for the work done by a gas

$$
W=p \Delta V
$$

Step 2: Substitute in values

$$
\begin{aligned}
& \Delta V=\text { final volume }- \text { initial volume }=0.030-0.015=0.015 \mathrm{~m}^{3} \\
& \qquad \mathrm{~W}=\left(1.0 \times 10^{5}\right) \times 0.015=1500 \mathrm{~J}
\end{aligned}
$$

