Worksheet 4.5

Electronegativity and intermolecular forces

- 1 Electronegativity values can be used to predict the polarity of bonds.
 - **a** What is the meaning of the term **electronegativity**?

[2]

b The table below lists electronegativity values for a number of atoms.

Atom	Cl	F	Н	I	0
Electronegativity	3.0	4.0	2.1	2.5	3.5

Use the data in the table to predict the polarity of the following bonds. Copy the bonded atoms shown and add the symbols + and above the appropriate atoms.

The shape of the molecule F_2O is shown on the right.

i Describe the shape of this molecule.

[3]

ii Explain why F₂O has this shape.

[3]

iii Suggest a value for the F-O-F bond angle.

[1]

iv Draw a diagram of the F₂O molecule to show the direction of the dipole.

[1]

2 The boiling points of some Group V hydrides are shown below.

Hydride	NH ₃	PH ₃	AsH ₃	SbH ₃
Boiling point / °C	33	88	55	17

- a Describe and explain the general trend in the boiling points of the hydrides from PH₃ to SbH₃. [3]
- **b** Explain why the boiling point of ammonia, NH₃, is higher than that of phosphine, PH₃. [2]
- 3 Use ideas about structure, electronegativity and intermolecular forces to explain why phosphorus trichloride, PCl_3 , is a liquid at room temperature but phosphine, PH_3 , is a gas. Electronegativity values: Cl = 3.0; H = 2.1; P = 2.1 [10]
- 4 Ethanol, C₂H₅OH, is a hydrogen-bonded molecule at room temperature.
 - a What are the requirements for hydrogen bonding to occur between two molecules? [4]
 - **b** Draw **two** molecules of ethanol to show the hydrogen bonding between them. Include on your diagram any relevant lone pairs of electrons that play a part in the hydrogen bonding. [3]
 - c Explain why butane, CH₃CH₂CH₂CH₃, has a higher boiling point than 2-methylpropane, CH₃CH(CH₃)CH₃, even though they have the same number of electrons. [7]