

The diagram shows information about the final 70 seconds of a car journey.

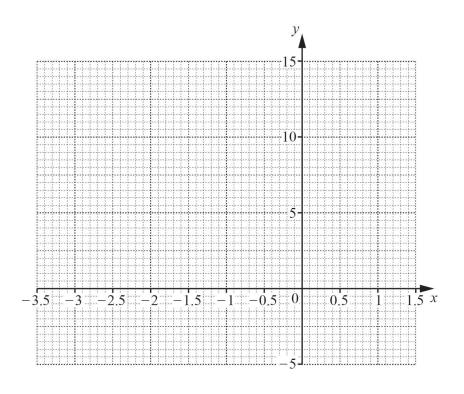
(a) Find the deceleration of the car between 60 and 70 seconds.

..... m/s² [1]

(b) Find the distance travelled by the car during the 70 seconds.

..... m [3]

[Total: 4]


2 The table shows some values for $y = x^3 + 3x^2 + 2$.

x	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	1.5	1	1.5
у	-4.1		5.1	6	5.4	4	2.6		2.9		12.1

(a) Complete the table.

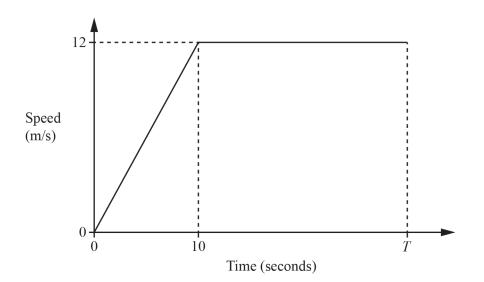
[3]

(b) On the grid, draw the graph of $y = x^3 + 3x^2 + 2$ for $-3.5 \le x \le 1.5$.

[4]

(c) Use your graph to solve the equation $x^3 + 3x^2 + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x = \dots$$
 [1]


(d) By drawing a suitable straight line, solve the equation $x^3 + 3x^2 + 2x + 2 = 0$ for $-3.5 \le x \le 1.5$.

$$x = \dots$$
 [2]

(e) For $-3.5 \le x \le 1.5$, the equation $x^3 + 3x^2 + 2 = k$ has three solutions and k is an integer. Write down a possible value of k.

$$k = \dots$$
 [1]

[Total: 11]

NOT TO SCALE

The diagram shows the speed–time graph for the first T seconds of a car journey.

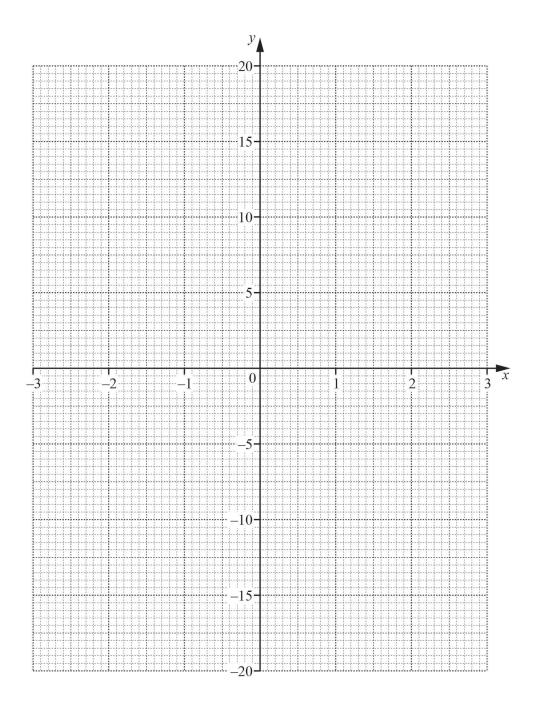
(a) Find the acceleration during the first 10 seconds.

	m/s ²	[1]
--	------------------	-----

(b) The total distance travelled during the T seconds is 480 m.

Find the value of *T*.

$$T = \dots$$
 [3]

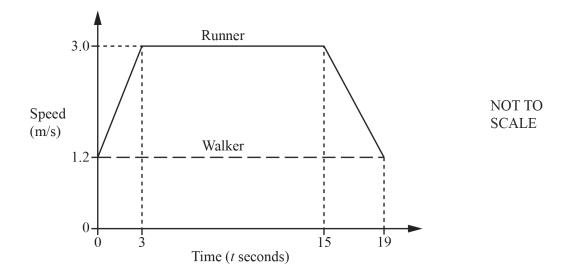

[Total: 4]

4 The table shows some values of $y = x^3 - 3x - 1$.

х	-3	-2.5	-2	-1.5	-1	0	1	1.5	2	2.5	3
у	-19	-9.1		0.1	1	-1	-3	-2.1	1	7.1	

(a) Complete the table of values.

(b) Draw the graph of $y = x^3 - 3x - 1$ for $-3 \le x \le 3$.


[4]

(c) A straight line through (0, -17) is a tangent to the graph of $y = x^3 - 3x - 1$.

(i) On the grid, draw this tangent.

[1]

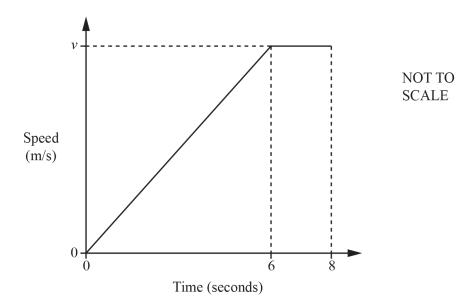
(ii) Find the co-ordinates of the point where the tangent meets your graph.
(ii	(
(d) By d	$y = \dots$ rawing a suitable straight line on the grid, solve the equation $x^3 - 6x - 3 = 0$.
	$x = \dots \text{ or } x = \dots \text{ or } x = \dots $ [4]
	[Total: 15
The diagra	am shows the speed-time graph for part of a journey for two people, a runner and a walker.

(a)	Calculate	the acce	leration of	of the runner	for the	first 3	seconds.

 m/s^2	[1]

(b) Calculate the total distance travelled by the runner in the 19 seconds.

 m	[3]


(c) The runner and the walker are travelling in the same direction along the same path. When t = 0, the runner is 10 metres behind the walker.

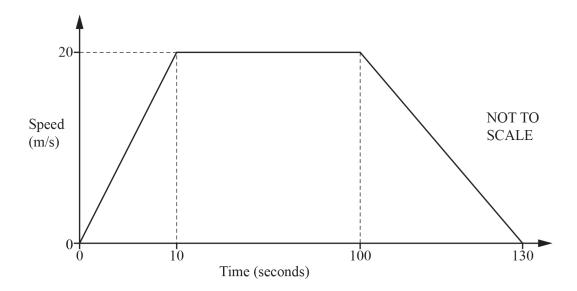
Find how far the runner is ahead of the walker when t = 19.

III [3]		m	[3]
---------	--	---	-----

[Total: 7]

6 The diagram shows information about the first 8 seconds of a car journey.

The car travels with constant acceleration reaching a speed of v m/s after 6 seconds.


The car then travels at a constant speed of v m/s for a further 2 seconds.

The car travels a total distance of 150 metres.

Work out the value of *v*.

 $v = \dots$ [3]

[Total: 3]

The speed–time graph shows information about the journey of a tram between two stations.

(a) Calculate the distance between the two stations.

m	[3]

(b) Calculate the average speed of the tram for the whole journey.

m/s [1		l	
-------	---	--	---	--

[Total: 4]

y = x + ix 3 can be written in the form $y = (x + a) + i$		$y = x^2 + 7x - 5$ can be written in the form $y = ($	(x + a)	$)^{2}$ +	b
---	--	---	---------	-----------	---

Find the value of a and the value of b.