Worksheet 7.3

Naming compounds and balancing redox equations

- 1 Name the following compounds.
 - a GeO_2
 - **b** Cu₂O
 - c CaSO₃
 - d KIO₃
 - e NaNO₂
 - $\mathbf{f} = \mathrm{MnO_4}^{2-}$
 - $g VO_2^+$
 - h SnBr₄
 - i K₂CrO₄
 - $Mg(ClO_4)_2.6H_2O$ j

[10]

- 2 Write the formulae for the following compounds.
 - a copper(I) chloride
 - **b** iron(III) nitrate(V)
 - c barium nitrate(III) (also called barium nitrite)
 - **d** tin(IV)sulfate(VI)
 - e phosphorus(V) sulfide
 - **f** sodium chlorate(V)
 - g magnesium nitride

h	chromium(III) sulfate-18-water (S in sulfate has oxidation number +6)	[8]
---	---	-----

Write two half-equations for each of the following reactions. 3

- **a** $Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$ [2] **b** $2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^-$ [2] \mathbf{c} $2\mathbf{I}^- + \mathbf{H}_2\mathbf{O}_2 + 2\mathbf{H}^+ \rightarrow \mathbf{I}_2 + 2\mathbf{H}_2\mathbf{O}$ [2] **d** $3Cu + 8H^+ + 2NO_3^- \rightarrow 3Cu^{2+} + 2NO + 4H_2O$ [2] [2]
- e $Cr_2O_7^{2-} + 6I^- + 14H^+ \rightarrow 2Cr^{3+} + I_2 + 7H_2O$

Use the oxidation number method to balance the following equations. Show all oxidation 4 numbers and all oxidation number changes.

a	$\mathrm{Co}^{2^+} + \mathrm{Cl}_2 \rightarrow \mathrm{Co}^{3^+} + \mathrm{Cl}^-$	[5]
b	$Fe^{3+} + Zn \rightarrow Zn^{2+} + Fe^{2+}$	[5]
c	$\mathrm{Al} + \mathrm{H}^{+} \rightarrow \mathrm{Al}^{3+} + \mathrm{H}_{2}$	[5]
d	$MnO_4^- + SO_3^{2-} + H^+ \rightarrow Mn^{2+} + SO_4^{2-} + H_2O$	[6]
e	$AsO_3^{3-} + Zn + H^+ \rightarrow AsH_3 + Zn^{2+} + H_2$	[6]
f	$I_2 + OH^- \rightarrow I^- + IO_3^- + H_2O$	[6]

Hint: In part **f** some of the iodine is oxidised to IO_3^- ions and some is reduced to I⁻ ions. You balance the oxidation numbers by considering the ratio of these two ions. A reaction in which a substance oxidises and reduces itself is called a disproportionation reaction (see page 186 of the Coursebook).

1