Worksheet 18.3

Lattice energy

1 Using calcium, bromine and calcium bromide as examples, define the following terms. You should illustrate each answer with an equation, including all state symbols.

10	Tou should mustrate each unswer with an equation, merading an state symbols.			
a	first ionisation energy	[4]		
b	second ionisation energy	[4]		
c	enthalpy change of atomisation	[3]		
d	first electron affinity	[4]		
e	lattice energy	[3]		
Use the data in the table below to draw and label a Born-Haber cycle and to calculate the				

2 Use the data in the table below to draw and label a Born–Haber cycle and to calculate the lattice energy of:

a s	odium chloride	[4]
-----	----------------	-----

b magnesium chloride. [5]

Enthalpy change	Atom or molecule	Value / kJ mol ⁻¹
atomisation energy	Na	+109
atomisation energy	Mg	+150
atomisation energy	Cl	+121
first ionisation energy	Na	+494
first ionisation energy	Mg	+736
second ionisation energy	Mg	+1450
first electron affinity	Cl	-364
enthalpy change of formation	NaCl	-411
enthalpy change of formation	MgCl ₂	-642

3 a Draw an enthalpy cycle (Hess cycle) to show the dissolving of magnesium chloride (MgCl₂) in water.

b The table below shows the values of all but one of the enthalpy changes relevant to this cycle.

Enthalpy change	Value / kJ mol ⁻¹
enthalpy change of solution	-155
lattice energy	-2493
enthalpy change of hydration of Cl ⁻ ion	-364

i Define the enthalpy change of hydration for the magnesium ion.

ii Use the values given to calculate the value of the enthalpy change of hydration for magnesium ions.

[5]

[3]

[5]

	c	Draw a diagram to show how water molecules are arranged around a magnesium ion			
		in a solution of magnesium chloride.	[2]		
	d	Explain why the enthalpy change of hydration for a magnesium ion is more exothermic			
		than for a sodium ion.	[3]		
	e	The enthalpy change of solution of magnesium chloride is exothermic whilst that of			
		potassium chloride is endothermic. Explain this difference.	[4]		
4	For each of the following pairs of compounds, state which one you would expect to have				
	the higher lattice energy. Explain your answers.				
	a	NaF and MgO	[2]		
	b	MgO and SrS	[2]		