Stationary Points Question Paper 1

Level	International A Level		
Subject	Maths		
Exam Board	CIE		
Торіс	Differentiation		
Sub Topic	Stationary Points		
Booklet	Question Paper 1		

Time Allowed:	65 minutes
Score:	/54
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 The equation of a curve is $y = x^3 + px^2$, where p is a positive constant.
 - (i) Show that the origin is a stationary point on the curve and find the coordinates of the other stationary point in terms of *p*. [4]
 - (ii) Find the nature of each of the stationary points. [3]

Another curve has equation $y = x^3 + px^2 + px$.

- (iii) Find the set of values of p for which this curve has no stationary points. [3]
- 2 Variables u, x and y are such that u = 2x(y x) and x + 3y = 12. Express u in terms of x and hence find the stationary value of u. [5]
- 3 The function f is defined for x > 0 and is such that $f'(x) = 2x \frac{2}{x^2}$. The curve y = f(x) passes through the point P(2, 6).
 - (i) Find the equation of the normal to the curve at *P*. [3]
 - (ii) Find the equation of the curve. [4]
 - (iii) Find the *x*-coordinate of the stationary point and state with a reason whether this point is a maximum or a minimum. [4]
- 4 A curve is such that $\frac{d^2y}{dx^2} = \frac{24}{x^3} 4$. The curve has a stationary point at *P* where x = 2.
 - (i) State, with a reason, the nature of this stationary point.

(ii) Find an expression for
$$\frac{dy}{dx}$$
. [4]

[1]

(iii) Given that the curve passes through the point (1, 13), find the coordinates of the stationary point *P*. [4]

- 5 A curve y = f(x) has a stationary point at (3, 7) and is such that $f''(x) = 36x^{-3}$.
 - (i) State, with a reason, whether this stationary point is a maximum or a minimum. [1]
 - (ii) Find f'(x) and f(x). [7]

6 A curve is such that
$$\frac{dy}{dx} = x^{\frac{1}{2}} - x^{-\frac{1}{2}}$$
. The curve passes through the point $(4, \frac{2}{3})$.
(i) Find the equation of the curve. [4]
 d^2y

(ii) Find
$$\frac{d y}{dx^2}$$
. [2]

(iii) Find the coordinates of the stationary point and determine its nature. [5]