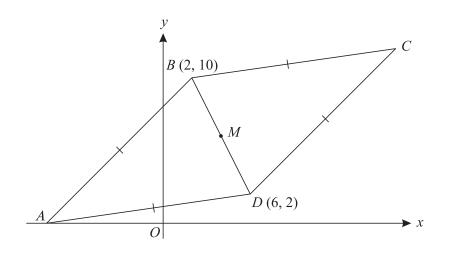
Coordinate Geometry Question Paper 8

Level	International A Level		
Subject	Maths		
Exam Board	CIE		
Торіс	Coordinate Geometry		
Sub Topic			
Booklet	Question Paper 8		


Time Allowed:	70 minutes
Score:	/58
Percentage:	/100

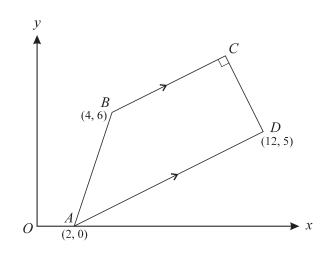
Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 Three points have coordinates A(2, 6), B(8, 10) and C(6, 0). The perpendicular bisector of AB meets the line BC at D. Find
 - (i) the equation of the perpendicular bisector of AB in the form ax + by = c, [4]
 - (ii) the coordinates of *D*.

2

The diagram shows a rhombus *ABCD*. The points *B* and *D* have coordinates (2, 10) and (6, 2) respectively, and *A* lies on the *x*-axis. The mid-point of *BD* is *M*. Find, by calculation, the coordinates of each of *M*, *A* and *C*. [6]


- 3 The equation of a curve is $y = x^2 4x + 7$ and the equation of a line is y + 3x = 9. The curve and the line intersect at the points *A* and *B*.
 - (i) The mid-point of AB is M. Show that the coordinates of M are $(\frac{1}{2}, 7\frac{1}{2})$. [4]
 - (ii) Find the coordinates of the point Q on the curve at which the tangent is parallel to the line y + 3x = 9. [3]
 - (iii) Find the distance MQ.

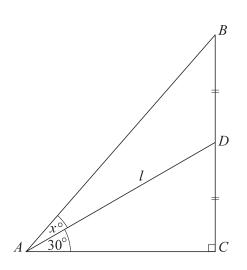
[1]

[4]

- 4 The curve $y = 9 \frac{6}{x}$ and the line y + x = 8 intersect at two points. Find
 - (i) the coordinates of the two points,
 - (ii) the equation of the perpendicular bisector of the line joining the two points. [4]

5

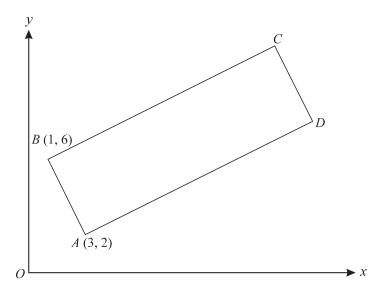
The diagram shows a trapezium *ABCD* in which *BC* is parallel to *AD* and angle $BCD = 90^{\circ}$. The coordinates of *A*, *B* and *D* are (2, 0), (4, 6) and (12, 5) respectively.


- (i) Find the equations of *BC* and *CD*. [5]
- (ii) Calculate the coordinates of *C*.

[2]

[4]

- 6 The gradient at any point (x, y) on a curve is $\sqrt{(1+2x)}$. The curve passes through the point (4, 11). Find
 - (i) the equation of the curve, [4]
 - (ii) the point at which the curve intersects the *y*-axis. [2]



In the diagram, triangle *ABC* is right-angled and *D* is the mid-point of *BC*. Angle $DAC = 30^{\circ}$ and angle $BAD = x^{\circ}$. Denoting the length of *AD* by *l*,

(i) express each of AC and BC exactly in terms of l, and show that $AB = \frac{1}{2}l\sqrt{7}$, [4]

(ii) show that
$$x = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - 30.$$
 [2]

8

The diagram shows a rectangle *ABCD*, where A is (3, 2) and B is (1, 6).

(i) Find the equation of *BC*.

Given that the equation of AC is y = x - 1, find

- (ii) the coordinates of *C*,
- (iii) the perimeter of the rectangle ABCD.

[4]

[2]

[3]