\qquad

For each of the following problems, give the net force on the block, and the acceleration, including units.

For problems 6-9, using the formula net Force = Mass • Acceleration, calculate the net force on the object.

| | |
| :--- | :--- | :--- |
| $6)$ | |
| 6 $=2 \mathrm{~m} / \mathrm{s}^{2}$ | 7) |

7)

$$
\mathrm{F}=\mathrm{m} \cdot \mathrm{a}=
$$

\qquad
8)

$$
\mathrm{F}=\mathrm{m} \cdot \mathrm{a}=
$$

\qquad
9)

$\mathrm{F}=\mathrm{m} \cdot \mathrm{a}=$ \qquad
10) Challenge: A student is pushing a 50 kg cart, with a force of 600 N . Another student measures the speed of the cart, and finds that the cart is only accelerating at $3 \mathrm{~m} / \mathrm{s}^{2}$. How much friction must be acting on the cart? Hint: Draw a diagram showing the cart, and the two forces acting on it.
\qquad

$$
\text { Equations: } \mathbf{F}=\mathbf{m a} \quad \mathbf{a}=\mathrm{F} / \mathrm{m} \quad \mathrm{~m}=\mathrm{F} / \mathbf{a}
$$

Plug in the given values for Force/Mass/Acceleration to solve. Remember, mass is in $\mathbf{k g}$-- force in in \mathbf{N} (newtons) - - acceleration is in $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$

1. How much force is needed to accelerate a 66 kg skier at $2 \mathrm{~m} / \mathrm{sec}^{2}$?
2. What is the force on a 1000 kg elevator that is falling freely at $9.8 \mathrm{~m} / \mathrm{sec}^{2}$?
3. What is the acceleration of a 50 kg object pushed with a force of 500 newtons?
4. The mass of a large car is 1000 kg . How much force would be required to accelerate the car at a rate of $3 \mathrm{~m} / \mathrm{sec}^{2}$?
5. A 50 kg skater pushed by a friend accelerates $5 \mathrm{~m} / \mathrm{sec}^{2}$. How much force did the friend apply?
6. A force of 250 N is applied to an object that accelerates at a rate of $5 \mathrm{~m} / \mathrm{sec}^{2}$. What is the mass of the object?
7. A bowling ball rolled with a force of 15 N accelerates at a rate of $3 \mathrm{~m} / \mathrm{sec}^{2}$; a second ball rolled with the same force accelerates $4 \mathrm{~m} / \mathrm{sec}^{2}$. What are the masses of the two balls?
8. If a 60 kg person on a 15 kg sled is pushed with a force of 300 N , what will be person's acceleration?
9. A force of 20 N acts upon a 5 kg block. Calculate the acceleration of the object.
10. An object of mass 300 kg is observed to accelerate at the rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the force required to produce this acceleration.
11. A 5 kg block is pulled across a table by a horizontal force of 40 N with a frictional force of 8 N opposing the motion. Calculate the acceleration of the object.
12. An object of mass 30 kg is in free fall in a vacuum where there is no air resistance. Determine the acceleration of the object.
13. An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50 newtons.
a. Determine the net force acting on the object and
b. calculate the acceleration of the object.
