What is Physics?

\square Physics is the study of the natural world around us from the very large, such as the solar system, to the very small, such as the atom.

PHYSICAL QUANTITIES, SI UNITS AND MEASUREMENT

Chapter 1

At the end of this chapter...

You should be able to:
\square show understanding that all physical quantities consist of a numerical magnitude and a unit
\square recall the following base quantities and their units: mass (kg), length (m), time (s$)$, current (A), temperature (K)
\square use the following prefixes and their symbols to indicate decimal sub-multiples and multiples of the SI units: nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M)

At the end of this chapter...

You should be able to:
\square show an understanding of the orders of magnitude of the sizes of common objects ranging from a typical atom to the Earth
\square describe how to measure a variety of lengths with appropriate accuracy by means of tapes, rules, micrometers and calipers, using a vernier scale as necessary
\square describe how to measure a short interval of time including the period of a simple pendulum with appropriate accuracy using stopwatches or appropriate instruments

Why do We Need to Measure Things?

Let's do this as a class...
Work in groups of two
Compare the length between the elbow to the first finger tip.

Physical Quantities and SI Units

Base Quantity	Name of SI unit	Symbol for SI Unit
Length	metre	m
Mass	kilogram	kg
Time	second	s
Electric Current	ampere	A
Temperature	kelvin	K
Intensity	candela	cd
Amount of Substance	mole	mol

Physical Quantities

- A physical quantity when measured may be described in terms of

1. A number
2. Its unit of measurement

Physical Quantities

- What is your height?
\square

Physical Quantities

\square Mass - unit of measurement, kilogram (kg)

Physical Quantities

\square Time - unit of measurement, second (s)

Do You Know???

Diameter of the Sun

$$
\begin{aligned}
& 1400000000 \mathrm{~m} \\
& 1.4 \mathrm{Gm} \text { (gigametre) }
\end{aligned}
$$

Thickness of a strand of hair $0.0002 m$
0.2 mm (millimetre)

Prefixes for SI units

Factor	Prefix	Symbol
10^{9}	giga-	G
10^{6}	mega-	M
10^{3}	kilo-	k
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	$\mathrm{\mu}$
10^{-9}	nano-	n

Prefixes Exercise 1

Express the following quantities in their respective Sl unit.
a. One kilometer =

$$
1000 \mathrm{~m} \text { or } 10^{3} \mathrm{~m}
$$

b. One microsecond =
d. One gram

$$
=
$$

One centimeter

Factor	Prefix	Symbol
10^{9}	giga-	G
10^{6}	mega-	M
10^{3}	kilo-	k
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n

Prefixes Exercise 1

e.	One miligram		$\begin{aligned} & 0.001 \mathrm{~g} \text { or } 10^{-3} \mathrm{~g} \\ & =10^{-6} \mathrm{~kg} \end{aligned}$	Factor	Prefix	Symbol
				10^{9}	giga-	G
				10^{6}	mega-	M
f.	One millisecond	$=$	0.001 s or $10^{-3} \mathrm{~s}$	10^{3}	kilo-	k
				10^{-1}	deci-	d
g.	One minute $=$		60s	10^{-2}	centi-	c
				10^{-3}	milli-	m
h.	One hour	$=$	3600s	10^{-6}	micro-	μ
				10^{-9}	nano-	n

What does SI units mean?

\square Système International
\square International System of Units

Measurement of Length

\square The SI unit for length is

$$
\text { metre } \quad \text { m }
$$

\square Other units for length:
millimetre (mm), centimetre (cm), kilometre (km)

Measurement of Length

Range	Suitable Instruments	Accuracy of Instruments
Several metres (m)	Measuring Tape	0.1 cm (or 1 mm)
Several centimetres (cm)	Metre/Half- metre Rule	0.1 cm (or 1 mm)
Between 1 cm to 10 cm	Vernier Calipers	0.01 cm (or 0.1 mm)
Less than 2 cm	Micrometer Screw Gauge	0.001 cm (or 0.01 mm)

Measurement of Length

Measuring Tape

- Length of classroom, car, corridor

\square Metre rule:
\square Length of desk, book

Measurement of Length

Parallax Error

What is Parallax Error?
It is the error which arises due to incorrect positioning of the eye.

Measurement of Length

Parallax Error

How do we avoid Parallax Error?
\square Always place the eye vertically above the mark being read. OR
\square Place the eye in level with the mark being read.

Vernier Calipers

\square French scientist Pierre Vernier(1580-1637)

Accuracy: 0.01 cm (or 0.1 mm)

How to read off the Vernier Caliper?

Reading $=11 \mathrm{~mm}+0.7 \mathrm{~mm}=11.7 \mathrm{~mm}$

Vernier Calipers Its structure and its application

\square The inside jaws is used to measure internal diameter of test-tube, ring etc.

In main scale, reading $=1.90 \mathrm{~cm}$ in vernier scale, reading $=0.01 \mathrm{~cm}$ the actual reading $\quad=\underline{1.91 \mathrm{~cm}}$

Vernier Calipers
 Its structure and its application

\square The outside jaws is used to measure small length, diameter of test-tube etc.

main scale reading $=4.20 \mathrm{~cm}$
vernier scale reading $=0.06 \mathrm{~cm}$
Actual reading $\quad=\underline{4.26 ~ c m}$

Exercise 1

Reading $=19 \mathrm{~mm}+0.4 \mathrm{~mm}=19.4 \mathrm{~mm}$

Exercise 2

```
mm
```


Reading $=4 \mathrm{~mm}+0.7 \mathrm{~mm}=4.7 \mathrm{~mm}$

Exercise 3

MEASURE = $1.8 \mathrm{~cm}+0.06 \mathrm{~cm}$
MEASURE $=1.86 \mathrm{~cm}$

Exercise 4

MEASURE $=0.7 \mathrm{~cm}+0.03 \mathrm{~cm}$
MEASURE $=0.73 \mathrm{~cm}$

Exercise 5

Reading $=12 \mathrm{~mm}+0.6 \mathrm{~mm}=12.6 \mathrm{~mm}$

Exercise 6

Reading $=7 \mathrm{~mm}+0.5 \mathrm{~mm}=7.5 \mathrm{~mm}$

Vernier Calipers

\square Zero Error (Vernier Calipers)
\square Positive Zero Error

Zero Error $=\quad+0.1 \mathrm{~mm}$
If the observed reading $=32.4 \mathrm{~mm}$, then
Actual measurement $=$ Observed reading - Zero error

$$
\begin{aligned}
& =32.4-(+0.1) \quad \mathrm{mm} \\
& =\quad 32.3 \quad \mathrm{~cm}
\end{aligned}
$$

Vernier Calipers

\square Zero Error (Vernier Calipers)

- Negative Zero Error

$$
\text { Zero Error }=\quad-0.2 \mathrm{~mm}
$$

If the observed reading $=32.4 \mathrm{~mm}$, then
Actual measurement $=$ Observed reading - Zero error

$$
\begin{array}{ll}
= & 32.4-(-0.2) \\
= & 32.6
\end{array}
$$

Micrometer Screw Gauge

Accuracy: 0.001 cm (or 0.01 mm)

-Smaller length, such as diameter of thin wire, thickness of a piece of paper etc can be measured by micrometer screw gauge.

Micrometer Screw Gauge

| Sleeve reading | $=$ | 3.0 mm |
| :--- | :--- | ---: | :--- |
| Thimble reading $=$ | 0.09 mm | |
| Reading | $=3.09 \mathrm{~mm}$ | |
| Reading | $=0.309 \mathrm{~cm}$ | |

Micrometer Screw Gauge

| Sleeve reading | $=$ | 5.5 mm |
| :--- | :--- | ---: | :--- |
| Thimble reading $=$ | 0.30 mm | |
| Reading | $=5.80 \mathrm{~mm}$ | |
| Reading | $=0.580 \mathrm{~cm}$ | |

Micrometer Screw Gauge

Sleeve reading	$=$	3.5 mm
Thimble reading	$=0.06 \mathrm{~mm}$	
Reading	$=3.56 \mathrm{~mm}$	
Reading	$=0.356 \mathrm{~cm}$	

Exercise 1

Reading $=11.5 \mathrm{~mm}+0.25 \mathrm{~mm}=11.75 \mathrm{~mm}$

Exercise 2

Reading $=20.5 \mathrm{~mm}+0.22 \mathrm{~mm}=20.72 \mathrm{~mm}$

Micrometer Screw Gauge

\square Zero Error (Micrometer Screw Gauge)
\square Positive Zero Error


```
Zero Error = +0.02 mm
```

If the observed reading $=2.37 \mathrm{~mm}$, then
Actual measurement $=$ Observed reading - Zero error

$$
\begin{array}{lll}
= & 2.37-(+0.02) & \mathrm{mm} \\
= & 2.35 \quad \mathrm{~mm}
\end{array}
$$

Micrometer Screw Gauge

\square Zero Error (Micrometer Screw Gauge)
\square Negative Zero Error

Zero Error $=\quad-0.03 \mathrm{~mm}$
If the observed reading $=2.37 \mathrm{~mm}$, then
Actual measurement $=$ Observed reading - Zero error

$$
\begin{aligned}
& =2.37-(-0.03) \\
& =2.40 \quad \mathrm{~mm} \\
& \hline
\end{aligned}
$$

Measurement of Time

\square Stopwatches are used to measure short intervals of time.
\square Two types:

- Digital stopwatch
- Analogue stopwatch
\square SI unit of time: second, s

Measurement of Time

Instruments	Usage	Accuracy of Instruments
Watch/Clock	hrs, mins, sec	1 s
Analogue Stopwatch	mins, sec	0.1 s
Digital Stopwatch	mins, sec	0.01 s
Atomic Clock	about $10^{-10} \mathrm{~s}$	-
Pendulum Clock	hrs, mins, sec	-
Radioactive decay clock	thousand of years	-

Measurement of Time

Watch/Clock

- used fror nmeasurfing laing inntervalls off timme
- most modier in watcines drepend om the vilibratiom of quiartz crystilils to keep binme accuratelly
- the energy that keeps these arystalls vilbratiting commes firanm similll beattery
- mmany watedmes strilll minalke use off coilledl sprivingis to sulpply the meedled ennergy

Measurement of Time

\square Stopwatch (Analogue/Digital)

- A stopwatch is used to measure short intervals of time.
- stopwatches (analogue and digital)

Analogue Stopwatch accuracy $=0.1 \mathrm{~s}$

Digital Stopwatch accuracy $=0.01 \mathrm{~s}$

Measurement of Time

\square Atomic Clock

- Atiomic cllock also work on oscilllation.
- The big differemge between a standlard clock in your home and an atiomic cllock is that thee oscilllation in an atiomic clock is between the mucllews of an atiom and the swirrounding ellectrons.

Measurement of Time

Pendulum Clock

- clocks make use of a process which is a regularly repeating motion (oscillations), such as the swing of a pendulum
- such oscillations are very regular so period is regular
- most modern clocks depend on the vibration of quartz crystals to keep time accurately
- in clocks that are wound up, elastic potential energy is stored in coiled springs

What is a pendulum?

\square A small object suspended by a piece of string or tread is called a simple pendulum.
\square The distance from the centre of the pendulum bob to the point of suspension is called the length of the pendulum.
\square One complete to and fro movement of the pendulum is called an oscillation.
\square The time taken for one complete oscillation is called the period.
\square The distance between the rest position of the pendulum and the extreme point of its oscillation is called the amplitude.

Diagram of a Pendulum

Finding the Period of a Pendulum

\square To find the period:
\square 1. Take the total time for 20 oscillations.
Why 20?
\square 2. Repeat 2 more times.
\square 3. Calculate the average time for 20 oscillations.
\square 4. Divide by 20 to obtain the period.

What Affects the Period of a Pendulum?
\square Mass?
x
\square Amplitude?
\square Length?

Simple Pendulum

\square When the length increases, the period increases.
\square When the length decreases, the period decreases.
\square When the mass of the bob increases/decreases, there is no effect on the period.

Simple Pendulum

\square When the amplitude of the bob increases/decreases, there is no effect on the period.
\square When the same experiment is done on the moon, the period increases.

Pendulum Exercise

The time taken for a pendulum to swing from rest position A to B is 0.8 s . What is the time taken for the pendulum to make 20 oscillations?

