Chapter 21: Further aspects of equilibria

Homework questions

- A group of students was asked to find the pH of an unknown solution. They were provided with 1 the following apparatus and chemicals:
 - standard hydrogen electrode plus a supply of hydrogen •
 - standard Cu/Cu²⁺ half-cell electrode •
 - buffer solutions with pH values 4, 7, 9, plus solutions of 0.1 mol dm^{-3} hydrochloric acid and • 0.1 mol dm^{-3} sodium hydroxide
 - filter paper soaked in saturated potassium nitrate solution •
 - a high resistance voltmeter. •

- Giving essential experimental details, explain how you could use this apparatus to find the pH of the unknown solution. Your account should include the following:
- a diagram of the apparatus you would use ٠
- any equations you would use and a description of the graphs you would draw •
- a description of how the buffers, HCl and NaOH should be used. $[K_{\rm w} = 1 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}]$

Total = 20

[3]

- When bromine is added to water the following reaction takes place: 2
 - $H_2O(1) + Br_2(1) \rightleftharpoons HOBr(aq) + HBr(aq)$
 - Explain why this is a disproportionation reaction. a
 - **b** The two acids formed are bromic(I) acid (HOBr) and hydrobromic acid (HBr). The pH values of their solutions are shown in the table below:

Acid	pH of 0.1 mol dm ⁻³ solution
HOBr	4.83
HBr	1.0

	i	Explain the terms strong acid and weak acid.	[2]			
	ii	Using the pH value of its 0.1 mol dm^{-3} solution, explain why HBr is a strong acid.	[2]			
	iii	Using the pH value of its 0.1 mol dm ⁻³ solution, explain why HOBr may be considered				
		a weak acid.	[2]			
	iv	Calculate the acid dissociation constant, K_a , of HOBr.	[3]			
c	i	Draw a dot-and-cross diagram to show the bonding in HOBr.	[1]			
	ii	Draw a molecule of HOBr and give the bond angle in the molecule.	[2]			
d	Wł	hen BrO ⁻ ions are added to iodide ions in the presence of acid, iodine is formed along				
	wit	vith bromide ions.				
	i	Write an equation for the reaction.	[2]			
	ii	Describe what would be observed if the resulting solution was shaken with a nonpolar				
		solvent, such as cyclohexane.	[2]			
	iii	Explain why this happens.	[2]			
		Total	= 21			

3	Dil	hydr	ogenphosphate ions (H_2PO_4) dissociate in aqueous solution to form hydrogenphosphate	9				
	ion	ions as follows:						
	$H_2PO_4^{-}(aq) \rightleftharpoons HPO_4^{2-}(aq) + H^+(aq)$							
	a		e p K_a of the dihydrogenphosphate ion is 7.2. Calculate the pH value for a 0.1 mol dm ⁻³	[7]				
	_	solution of sodium dihydrogenphosphate. [5]						
	b	i	Explain the term 'buffer solution' in terms of what it contains and what it does.	[2]				
		ii	Explain why a mixture of dihydrogenphosphate and hydrogenphosphate ions would					
			function as a buffer solution.	[5]				
		iii	What is the pH of a solution consisting of 0.01 mol dm ⁻³ dihydrogenphosphate ions					
			and 0.06 mol dm ⁻³ hydrogenphosphate ions?	[4]				
		iv	Explain what would happen to the pH of the buffer if a small amount of solid sodium					
			dihydrogenphosphate was added to the solution.	[3]				
	c	Ca	lcium phosphate, $Ca_3(PO_4)_2$, is a sparingly soluble salt of phosphoric acid.					
		i	Give the formulae of the two ions present in calcium phosphate.	[2]				
		ii	Give the equation for the equilibrium between solid calcium phosphate and its					
			constituent ions in solution.	[1]				
		iii	Give the expression for the solubility product for calcium phosphate.	[1]				
		iv	The solubility of calcium phosphate is 2.48×10^{-6} mol dm ⁻³ . Use this information to					
			calculate the solubility product of calcium phosphate. Remember to include the units.	[5]				
		v	Explain why calcium phosphate has a very negative lattice energy.	[2]				
		vi	Explain why calcium phosphate is sparingly soluble in water.	[2]				
			Total =					
			1000					