

PHYSICS - Speed, velocity and acceleration

LEARNING OBJECTIVES

1.2 Motion

Core

- Define speed and calculate average speed from total time / total distance
- · Plot and interpret a speed-time graph or a distance- time graph
- Recognise from the shape of a speedtime graph when a body is
- at rest
- moving with constant speed
- moving with changing speed
- Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
- Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph
- State that the acceleration of free fall for a body near to the Earth is constant

Supplement

- · Distinguish between speed and velocity
- Define and calculate acceleration using time taken change of velocity
- Calculate speed from the gradient of a distance-time graph
- Calculate acceleration from the gradient of a speed-time graph
- Recognise linear motion for which the acceleration is constant
- Recognise motion for which the acceleration is not constant
- Understand deceleration as a negative acceleration
- Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)

Average speed+= Distance moved Time taken

Α

Average speed = Distance moved Time taken

Distance measured in metres (m)

Time measured in seconds (s)

Speed - metres per second (m/s)

Average speed+= Distance moved Time taken

Example:

Car travels 50m

time 2s

speed = 50/2 = 25 m/s 25 m.s^{-1}

Velocity is speed in a given direction.

Velocity is speed in a given direction.

Velocity is 25m/s due west

Cyclist

+10m/s to the right

Cyclist

+10m/s to the right

-10m/s to the left

What's your vector Victor?

Quantities such as velocity are called vectors because they have size and direction

Acceleration = change in velocity time taken

Also written as:
$$a = v - u$$

Acceleration = change in velocity time taken

Velocity measured in m/s

Time measured in s

Acceleration measured in m/s/s or m/s²

$$a = v - u$$

$$a = \underline{60 - 0}$$

$$a = \underline{60 - 0}$$

$$a = \frac{60}{3} = 20 \text{m/s}^{-2}$$

$$a = \underline{60 - 0}$$

$$a = \frac{60}{3} = 20 \text{m/s}^{-2}$$

Deceleration (retardation)

Deceleration is negative acceleration - the object is slowing down. Eg. - 4m/s²

Car passes point A with a velocity of 10m/s. It has a steady (constant) acceleration of 4m/s². What is the velocity when it passes point B?

Car passes point A with a velocity of 10m/s. It has a steady (constant) acceleration of $4m/s^2$. What is the velocity when it passes point B?

Solution: car gains 4m/s of velocity every second. In 6s it gains an extra 24m/s.

Car passes point A with a velocity of 10m/s. It has a steady (constant) acceleration of $4m/s^2$. What is the velocity when it passes point B?

Solution: car gains 4m/s of velocity every second. In 6s it gains an extra 24m/s.

Final velocity = initial velocity + extra velocity

Car passes point A with a velocity of 10m/s. It has a steady (constant) acceleration of $4m/s^2$. What is the velocity when it passes point B?

Solution: car gains 4m/s of velocity every second. In 6s it gains an extra 24m/s.

Final velocity = initial velocity + extra velocity

Final velocity = 10 + 24 = 34m/s

Motion graphs

On a velocity – time (or speed – time) graph, the area under the line is numerically equal to the distance travelled.

Time/s

On a velocity – time (or speed – time) graph, the area under the line is numerically equal to the distance travelled.

The total distance travelled = 200 + 400 + 400 + 100 + 600 = 1700m

Free fall

Which object will hit the ground first?

Which object will hit the ground first?

Obviously the brick (because the feather is slowed much more by the air)

In a vacuum

No air resistance, objects both fall with the same downward acceleration.

In air

In a vacuum

No air resistance, objects both fall with the same downward acceleration.

Acceleration of free fall = 9.8m/s²

Given the symbol 'g'

No air resistance, objects both fall with the same downward acceleration.

Acceleration of free fall = 9.8m/s²

Given the symbol 'g'

Falling objects accelerate towards the ground at 10m/s² due to gravity. The force of gravity always acts towards the centre of the Earth.

Falling objects
accelerate towards
the ground at
10m/s² due to
gravity. The force
of gravity always
acts towards the
centre of the
Earth.

Falling objects accelerate towards the ground at 10m/s² due to gravity. The force of gravity always acts towards the centre of the Earth.

Time (s)

Time (s)

Time (s)

LEARNING OBJECTIVES

1.2 Motion

Core

- Define speed and calculate average speed from total time / total distance
- Plot and interpret a speed-time graph or a distance-time graph
- Recognise from the shape of a speedtime graph when a body is
- at rest
- moving with constant speed
- moving with changing speed
- Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
- Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph
- State that the acceleration of free fall for a body near to the Earth is constant

Supplement

- · Distinguish between speed and velocity
- Define and calculate acceleration using time taken change of velocity
- Calculate speed from the gradient of a distance-time graph
- Calculate acceleration from the gradient of a speed-time graph
- Recognise linear motion for which the acceleration is constant
- Recognise motion for which the acceleration is not constant
- Understand deceleration as a negative acceleration
- Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)

PHYSICS - Speed, velocity and acceleration