

PHYSICS - Speed, velocity and acceleration

LEARNING OBJECTIVES

1.2 Motion
 Core

- Define speed and calculate average speed from total time / total distance
- Plot and interpret a speed-time graph or a distance- time graph
- Recognise from the shape of a speedtime graph when a body is
- at rest
- moving with constant speed
- moving with changing speed
- Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
- Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph
- State that the acceleration of free fall for a body near to the Earth is constant

Supplement

- Distinguish between speed and velocity
- Define and calculate acceleration using time taken change of velocity
- Calculate speed from the gradient of a distance-time graph
- Calculate acceleration from the gradient of a speed-time graph
- Recognise linear motion for which the acceleration is constant
- Recognise motion for which the acceleration is not constant
- Understand deceleration as a negative acceleration
- Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)

Average speed $=$ Distance moved Time taken

Average speed $=$ Distance moved Time taken

Distance measured in metres (m) Time measured in seconds (s) Speed - metres per second (m / s)

Average speed $=$ Distance moved Time taken

Example:
Car
travels 50 m
time 2s
speed $=50 / 2=\begin{aligned} 25 \mathrm{~m} / \mathrm{s} \\ 25 \mathrm{~m} \cdot \mathrm{~s}^{-1}\end{aligned}$

So if that's

 speed, what is velocity?
Velocity is speed in a given direction.

Velocity is speed in a given direction.

Velocity is $25 \mathrm{~m} / \mathrm{s}$ due west
dío
dío

Example:

Example:

Cyclis \dagger $+10 \mathrm{~m} / \mathrm{s}$ to the right

Example:

Cyclis \dagger
$+10 \mathrm{~m} / \mathrm{s}$ to the right
$-10 \mathrm{~m} / \mathrm{s}$ to the left

What's your vector Victor?

What's your vector Victor?

Quantities such as velocity are called vectors because they have size and direction

Acceleration is the rate at which an object increases speed or velocity.

Acceleration is the rate at which an object increases speed or velocity.

Acceleration $=$ change in velocity time taken

Acceleration is the rate at which an object increases speed or velocity.

Acceleration $=$ change in velocity time taken

Also written as:

$$
a=\frac{v-u}{t}
$$

Acceleration is the rate at which an object increases speed or velocity.

Acceleration $=$ change in velocity time taken

Velocity measured in m / s Time measured in s Acceleration measured in $\mathrm{m} / \mathrm{s} / \mathrm{s}$ or $\mathrm{m} / \mathrm{s}^{2}$

Example: a drag car increases its velocity from zero to $60 \mathrm{~m} / \mathrm{s}$ in 3 s .

$$
a=\frac{v-u}{t}
$$

Example: a drag car increases its velocity from zero to $60 \mathrm{~m} / \mathrm{s}$ in 3 s .

$$
a=\frac{v-u}{t}
$$

$$
a=\frac{60-0}{3}
$$

Example: a drag car increases its velocity from zero to $60 \mathrm{~m} / \mathrm{s}$ in 3 s .

$$
a=\frac{v-u}{t}
$$

$$
a=\frac{60-0}{3}
$$

$$
a=\frac{60}{3}=20 \mathrm{~m} / \mathrm{s}^{-2}
$$

Example: a drag car increases its velocity from zero to $60 \mathrm{~m} / \mathrm{s}$ in 3 s .

$a=\underline{v-u}$ \dagger

$a=\frac{60-0}{3}$
$a=\frac{60}{3}=20 \mathrm{~m} / \mathrm{s}^{-2}$

Deceleration (retardation)

Deceleration is negative acceleration the object is slowing down. Eg. $-4 \mathrm{~m} / \mathrm{s}^{2}$

Constant acceleration example

Car passes point A with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It has a steady (constant) acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity when it passes point B ?

Constant acceleration example

Car passes point A with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It has a steady (constant) acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity when it passes point B ?

Solution: car gains $4 \mathrm{~m} / \mathrm{s}$ of velocity every second. In 6 s it gains an extra $24 \mathrm{~m} / \mathrm{s}$.

Constant acceleration example

Car passes point A with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It has a steady (constant) acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity when it passes point B ?

Solution: car gains $4 \mathrm{~m} / \mathrm{s}$ of velocity every second. In 6 s it gains an extra $24 \mathrm{~m} / \mathrm{s}$.

Final velocity = initial velocity + extra velocity

Constant acceleration example

Car passes point A with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It has a steady (constant) acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity when it passes point B ?

Solution: car gains $4 \mathrm{~m} / \mathrm{s}$ of velocity every second. In 6 s it gains an extra $24 \mathrm{~m} / \mathrm{s}$.

Final velocity = initial velocity + extra velocity
Final velocity $=10+24=34 \mathrm{~m} / \mathrm{s}$

Motion graphs

Acceleration from velocity : time graph

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

Acceleration can be calculated by the gradient of a velocity:time graph. (Remember gradient is the difference up divided by the difference across)

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

Velocity-time graphs

On a velocity - time (or speed - time) graph, the area under the line is numerically equal to the distance travelled.

The total distance travelled $=200+400+400+100+600=1700 \mathrm{~m}$

Acceleration of free fall (g)

Which object will hit the ground first?

Acceleration of free fall (g)

Which object
 will hit the ground first?

Obviously the brick (because the feather is slowed much more by the air)

Acceleration of free fall (g)

No air resistance, objects both fall with the same downward acceleration.

Acceleration of free fall (g)

No air resistance, objects both fall with the same downward acceleration.

Acceleration of
free fall = $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Given the symbol ' g '

Acceleration of free fall (g)

No air resistance, objects both fall with the same downward acceleration.

Acceleration of
free fall = $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Given the symbol ' g '

Acceleration and gravity

Acceleration and gravity

 Falling objectsaccelerate towards Falling objects
accelerate towards the ground at $10 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. The force of gravity always
acts towards the of gravity always
acts towards the centre of the Earth.

\section*{Air re

jects}

Acceleration and gravity

Falling objects accelerate towards the ground at $10 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. The force of gravity always acts towards the centre of the Earth.

Air resis jects owards

The atmosphere creates an upward force that slows down falling objects. This is known as air resistance or drag.

Acceleration and gravity

Falling objects accelerate towards the ground at $10 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. The force of gravity always of gravity always
acts towards the centre of the Earth.

Air resis jects owards

Acceleration and gravity

Time (s)

Acceleration and gravity

Acceleration and gravity

LEARNING OBJECTIVES

1.2 Motion
 Core

- Define speed and calculate average speed from total time / total distance
- Plot and interpret a speed-time graph or a distance- time graph
- Recognise from the shape of a speedtime graph when a body is
- at rest
- moving with constant speed
- moving with changing speed
- Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
- Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph
- State that the acceleration of free fall for a body near to the Earth is constant

Supplement

- Distinguish between speed and velocity
- Define and calculate acceleration using time taken change of velocity
- Calculate speed from the gradient of a distance-time graph
- Calculate acceleration from the gradient of a speed-time graph
- Recognise linear motion for which the acceleration is constant
- Recognise motion for which the acceleration is not constant
- Understand deceleration as a negative acceleration
- Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity)

PHYSICS - Speed, velocity and acceleration

